A236097 a(n) = |{0 < k < n-2: p = phi(k) + phi(n-k)/2 + 1, prime(p) - p - 1 and prime(p) - p + 1 are all prime}|, where phi(.) is Euler's totient function.
0, 0, 0, 0, 0, 0, 0, 2, 2, 1, 3, 1, 1, 2, 2, 3, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 2, 0, 5, 5, 2, 4, 1, 5, 3, 3, 2, 4, 4, 9, 5, 9, 4, 10, 3, 6, 6, 8, 5, 10, 4, 4, 7, 8, 10, 5, 8, 9, 9, 4, 11, 3, 5, 5, 9, 5, 4, 4, 5, 6, 8, 7, 6, 3, 11, 4, 8, 10, 9, 8, 7, 6, 11, 7, 9, 4, 6, 5, 6, 2, 9, 4, 7, 6, 7, 10, 9
Offset: 1
Keywords
Examples
a(20) = 1 since phi(2) + phi(18)/2 + 1 = 5, prime(5) - 5 - 1 = 5 and prime(5) - 5 + 1 = 7 are all prime. a(36) = 1 since phi(21) + phi(15)/2 + 1 = 17, prime(17) - 17 - 1 = 41 and prime(17) - 17 + 1 = 43 are all prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014
Crossrefs
Programs
-
Mathematica
p[n_]:=PrimeQ[n]&&PrimeQ[Prime[n]-n-1]&&PrimeQ[Prime[n]-n+1] f[n_,k_]:=EulerPhi[k]+EulerPhi[n-k]/2+1 a[n_]:=Sum[If[p[f[n,k]],1,0],{k,1,n-3}] Table[a[n],{n,1,100}]
Comments