cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236104 Triangle read by rows: T(n,k), n >= 1, k >= 1, in which column k lists k copies of the positive squares in nondecreasing order, and the first element of column k is in row k(k+1)/2.

This page as a plain text file.
%I A236104 #137 Nov 05 2024 05:39:51
%S A236104 1,4,9,1,16,1,25,4,36,4,1,49,9,1,64,9,1,81,16,4,100,16,4,1,121,25,4,1,
%T A236104 144,25,9,1,169,36,9,1,196,36,9,4,225,49,16,4,1,256,49,16,4,1,289,64,
%U A236104 16,4,1,324,64,25,9,1,361,81,25,9,1,400,81,25,9,4
%N A236104 Triangle read by rows: T(n,k), n >= 1, k >= 1, in which column k lists k copies of the positive squares in nondecreasing order, and the first element of column k is in row k(k+1)/2.
%C A236104 These are the squares of the entries of the triangle in A235791: T(n,k) = (A235791(n,k))^2.
%C A236104 Row n has length A003056(n) hence the first element of column k is in row A000217(k).
%C A236104 Columns 1-3 (including the initial zeros) are A000290, A008794, A211547.
%C A236104 Also column k lists the partial sums of the k-th column of triangle A196020 which gives an identity for sigma.
%C A236104 Since all the elements of this sequence are squares, we can draw an illustration of the alternating sum of row n step by step, and a symmetric diagram for A000203, A024916, A004125; see example.
%C A236104 For more information about the diagram see A237593.
%H A236104 Michael De Vlieger, <a href="/A236104/b236104.txt">Table of n, a(n) for n = 1..10075</a> (rows 1 <= n <= 500).
%F A236104 Sum_{k=1..A003056(n)} (-1)^(k-1)*T(n,k) = A024916(n). [Although this was stated as a fact, as far as I can tell, no proof was known.  However, _Don Reble_ has recently found a proof, which will be added here soon. - _N. J. A. Sloane_, Nov 23 2020]
%F A236104 A000203(n) = Sum_{k=1..A003056(n)} (-1)^(k-1) * (T(n,k) - T(n-1,k)), assuming that T(k*(k+1)/2-1,k) = 0. - _Omar E. Pol_, Oct 10 2018
%e A236104 Triangle begins:
%e A236104     1;
%e A236104     4;
%e A236104     9,   1;
%e A236104    16,   1;
%e A236104    25,   4;
%e A236104    36,   4,   1;
%e A236104    49,   9,   1;
%e A236104    64,   9,   1;
%e A236104    81,  16,   4;
%e A236104   100,  16,   4,   1;
%e A236104   121,  25,   4,   1;
%e A236104   144,  25,   9,   1;
%e A236104   169,  36,   9,   1;
%e A236104   196,  36,   9,   4;
%e A236104   225,  49,  16,   4,   1;
%e A236104   256,  49,  16,   4,   1;
%e A236104   289,  64,  16,   4,   1;
%e A236104   324,  64,  25,   9,   1;
%e A236104   361,  81,  25,   9,   1;
%e A236104   400,  81,  25,   9,   4;
%e A236104   441, 100,  36,   9,   4,   1;
%e A236104   484, 100,  36,  16,   4,   1;
%e A236104   529, 121,  36,  16,   4,   1;
%e A236104   576, 121,  49,  16,   4,   1;
%e A236104   ...
%e A236104 For n = 6 the sum of all divisors of all positive integers <= 6 is [1] + [1+2] + [1+3] + [1+2+4] + [1+5] + [1+2+3+6] = 1 + 3 + 4 + 7 + 6 + 12 = 33. On the other hand the 6th row of triangle is 36, 4, 1, therefore the alternating row sum is 36 - 4 + 1 = 33, equaling the sum of all divisors of all positive integers <= 6.
%e A236104 Illustration of the alternating sum of the 6th row as the area of a polygon (or the number of cells), step by step, in the fourth quadrant:
%e A236104 .     _ _ _ _ _ _       _ _ _ _ _ _       _ _ _ _ _ _
%e A236104 .    |           |     |           |     |           |
%e A236104 .    |           |     |           |     |           |
%e A236104 .    |           |     |           |     |           |
%e A236104 .    |           |     |        _ _|     |          _|
%e A236104 .    |           |     |       |         |        _|
%e A236104 .    |_ _ _ _ _ _|     |_ _ _ _|         |_ _ _ _|
%e A236104 .
%e A236104 .          36           36 - 4 = 32     36 - 4 + 1 = 33
%e A236104 .
%e A236104 Then using this method we can draw a symmetric diagram for A000203, A024916, A004125, as shown below:
%e A236104 --------------------------------------------------
%e A236104 n     A000203  A024916            Diagram
%e A236104 --------------------------------------------------
%e A236104 .                         _ _ _ _ _ _ _ _ _ _ _ _
%e A236104 1        1        1      |_| | | | | | | | | | | |
%e A236104 2        3        4      |_ _|_| | | | | | | | | |
%e A236104 3        4        8      |_ _|  _|_| | | | | | | |
%e A236104 4        7       15      |_ _ _|    _|_| | | | | |
%e A236104 5        6       21      |_ _ _|  _|  _ _|_| | | |
%e A236104 6       12       33      |_ _ _ _|  _| |  _ _|_| |
%e A236104 7        8       41      |_ _ _ _| |_ _|_|    _ _|
%e A236104 8       15       56      |_ _ _ _ _|  _|     |* *
%e A236104 9       13       69      |_ _ _ _ _| |      _|* *
%e A236104 10      18       87      |_ _ _ _ _ _|  _ _|* * *
%e A236104 11      12       99      |_ _ _ _ _ _| |* * * * *
%e A236104 12      28      127      |_ _ _ _ _ _ _|* * * * *
%e A236104 .
%e A236104 The total number of cells in the first n set of symmetric regions of the diagram equals A024916(n). It appears that the total number of cells in the n-th set of symmetric regions of the diagram equals sigma(n) = A000203(n). Example: for n = 12 the 12th row of triangle is 144, 25, 9, 1, hence the alternating sums is 144 - 25 + 9 - 1 = 127. On the other hand we have that A000290(12) - A004125(12) = 144 - 17 = A024916(12) = 127, equaling the total number of cells in the diagram after 12 stages. The number of cells in the 12th set of symmetric regions of the diagram is sigma(12) = A000203(12) = 28. Note that in this case there is only one region. Finally, the number of *'s is A004125(12) = 17.
%e A236104 Note that the diagram is also the top view of the stepped pyramid described in A245092. - _Omar E. Pol_, Feb 12 2018
%t A236104 Table[Ceiling[(n + 1)/k - (k + 1)/2]^2, {n, 20}, {k, Floor[(Sqrt[8 n + 1] - 1)/2]}] // Flatten (* _Michael De Vlieger_, Feb 10 2018, after _Hartmut F. W. Hoft_ at A235791 *)
%o A236104 (Python)
%o A236104 from sympy import sqrt
%o A236104 import math
%o A236104 def T(n, k): return int(math.ceil((n + 1)/k - (k + 1)/2))
%o A236104 for n in range(1, 21): print([T(n, k)**2 for k in range(1, int(math.floor((sqrt(8*n + 1) - 1)/2)) + 1)]) # _Indranil Ghosh_, Apr 25 2017
%Y A236104 Cf. A000203, A000217, A000290, A001227, A003056, A008794, A024916, A004125, A196020, A211343, A228813, A231345, A231347, A235791, A235794, A235799, A236106, A236112, A236540, A237270, A237591, A237593, A239660, A244050, A245092, A262626, A286000.
%K A236104 nonn,tabf,look
%O A236104 1,2
%A A236104 _Omar E. Pol_, Jan 23 2014