This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A236108 #53 Jan 25 2023 15:59:38 %S A236108 4,6,9,10,14,15,21,22,25,33,35,49,55,77,121,202,303,505,707,1111, %T A236108 10201,35954,53931,89885,125839,197747,1815677,21239726,31859589, %U A236108 53099315,74339041,116818493,323172529,1072606163,13241661778,19862492667,33104154445,46345816223,72829139779 %N A236108 Nonprimes whose proper divisors are partition numbers. %C A236108 Known terms are squares of A049575 or products of 2 distinct terms of A049575. - _Michel Marcus_, Jan 25 2023 %C A236108 This conjecture holds for terms <= 10^16. - _David A. Corneth_, Jan 25 2023 %H A236108 David A. Corneth, <a href="/A236108/b236108.txt">Table of n, a(n) for n = 1..81</a> %e A236108 10 is in the sequence because 10 is a nonprime number and the proper divisors of 10 are 1, 2, 5, which are also partition numbers. %p A236108 isA000041 := proc(n) %p A236108 local k,P; %p A236108 for k from 1 do %p A236108 P := combinat[numbpart](k) ; %p A236108 if P > n then %p A236108 return false; %p A236108 elif P = n then %p A236108 return true ; %p A236108 end if; %p A236108 end do: %p A236108 end proc: %p A236108 isA236108 := proc(n) %p A236108 local pdvs,d ; %p A236108 if n =1 or isprime(n) then %p A236108 return false; %p A236108 end if; %p A236108 pdvs := numtheory[divisors](n) minus {n} ; %p A236108 for d in pdvs do %p A236108 if not isA000041(d) then %p A236108 return false; %p A236108 end if; %p A236108 end do: %p A236108 return true; %p A236108 end proc: %p A236108 for n from 1 to 300000 do %p A236108 if isA236108(n) then %p A236108 printf("%d,",n) ; %p A236108 end if; %p A236108 end do: # _R. J. Mathar_, Jan 29 2014 %t A236108 partitionNumbers = Table[PartitionsP[n], {n, 1, 1000}]; %t A236108 Select[Range[2, 10000], %t A236108 If[! PrimeQ[#], %t A236108 ContainsOnly[Divisors[#][[2 ;; -2]], partitionNumbers]] &] (* _Julien Kluge_, Dec 03 2016 *) %Y A236108 Cf. A000041, A018252, A049575, A167392. %Y A236108 Cf. A236102, A236103, A236105, A236107, A236110. %K A236108 nonn %O A236108 1,1 %A A236108 _Omar E. Pol_, Jan 22 2014 %E A236108 a(17)-a(26) from _R. J. Mathar_, Jan 29 2014 %E A236108 a(27)-a(32) from _Jon E. Schoenfield_, Feb 05 2014 %E A236108 a(33)-a(34) from _Michel Marcus_, Jan 24 2023 %E A236108 More terms from _David A. Corneth_, Jan 25 2023