This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A236112 #35 Nov 05 2024 05:40:24 %S A236112 0,0,1,0,1,0,4,0,4,1,0,9,1,0,9,1,0,16,4,0,16,4,1,0,25,4,1,0,25,9,1,0, %T A236112 36,9,1,0,36,9,4,0,49,16,4,1,0,49,16,4,1,0,64,16,4,1,0,64,25,9,1,0,81, %U A236112 25,9,1,0,81,25,9,4,0,100,36,9,4,1,0,100,36,16,4,1,0,121,36,16,4,1,0,121,49,16,4,1,0 %N A236112 Triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists k+1 copies of the squares in nondecreasing order, and the first element of column k is in row k(k+1)/2. %C A236112 Gives an identity for the sum of remainders of n mod k, for k = 1,2,3,...,n. Alternating sum of row n equals A004125(n), i.e., Sum_{k=1..A003056(n)} (-1)^(k-1)*T(n,k) = A004125(n). %C A236112 Row n has length A003056(n) hence the first element of column k is in row A000217(k). %e A236112 Triangle begins: %e A236112 0; %e A236112 0; %e A236112 1, 0; %e A236112 1, 0; %e A236112 4, 0; %e A236112 4, 1, 0; %e A236112 9, 1, 0; %e A236112 9, 1, 0; %e A236112 16, 4, 0; %e A236112 16, 4, 1, 0; %e A236112 25, 4, 1, 0; %e A236112 25, 9, 1, 0; %e A236112 36, 9, 1, 0; %e A236112 36, 9, 4, 0; %e A236112 49, 16, 4, 1, 0; %e A236112 49, 16, 4, 1, 0; %e A236112 64, 16, 4, 1, 0; %e A236112 64, 25, 9, 1, 0; %e A236112 81, 25, 9, 1, 0; %e A236112 81, 25, 9, 4, 0; %e A236112 100, 36, 9, 4, 1, 0; %e A236112 100, 36, 16, 4, 1, 0; %e A236112 121, 36, 16, 4, 1, 0; %e A236112 121, 49, 16, 4, 1, 0; %e A236112 ... %e A236112 For n = 24 the 24th row of triangle is 121, 49, 16, 4, 1, 0 therefore the alternating row sum is 121 - 49 + 16 - 4 + 1 - 0 = 85 equaling A004125(24). %Y A236112 Cf. A000203, A000217, A000290, A003056, A004125, A120444, A196020, A211343, A228813, A231345, A231347, A235791, A235794, A236104, A236106, A237048, A237591, A237593, A261699. %K A236112 nonn,tabf %O A236112 1,7 %A A236112 _Omar E. Pol_, Jan 23 2014