A236171 Numbers k such that k^2 - k - 1, k^3 - k - 1, and k^4 - k - 1 are all prime.
4, 9, 11, 16, 55, 60, 71, 189, 361, 450, 469, 669, 1261, 1351, 1490, 1591, 2101, 2254, 2396, 2594, 3774, 3866, 4011, 5375, 5551, 5840, 6070, 7336, 7545, 7666, 7735, 8105, 8255, 9825, 10525, 11621, 12100, 13084, 13454
Offset: 1
Keywords
Examples
3866^2 - 3866 - 1, 3866^3 - 3866 - 1, and 3866^4 - 3866 - 1 are all prime, so 3866 is a member of this sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[15000], And @@ PrimeQ[#^Range[2, 4] - # - 1] &] (* Amiram Eldar, Mar 21 2020 *)
-
PARI
s=[]; for(n=1, 20000, if(isprime(n^2-n-1) && isprime(n^3-n-1) && isprime(n^4-n-1), s=concat(s, n))); s \\ Colin Barker, Jan 20 2014
-
Python
import sympy from sympy import isprime {print(n) for n in range(10**5) if isprime(n**2-n-1) and isprime(n**3-n-1) and isprime(n**4-n-1)}