This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A236203 #46 Aug 21 2022 04:18:57 %S A236203 0,0,3,5,8,12,15,21,24,32,35,45,48,60,63,77,80,96,99,117,120,140,143, %T A236203 165,168,192,195,221,224,252,255,285,288,320,323,357,360,396,399,437, %U A236203 440,480,483,525,528,572,575,621,624,672,675,725,728,780,783,837,840,896 %N A236203 Interleave A005563(n), A028347(n). %C A236203 A175628 gives the numerators of interleaved Lyman and Balmer series, i.e., A005563(n)/A000290(n+1) and A061037(n+2)/A061038(n+2). %C A236203 Difference table of a(n): %C A236203 -1, -3, 0, 0, 3, 5, 8, 12, 15, 21, 24, ... %C A236203 -2, 3, 0, 3, 2, 3, 4, 3, 6, 3, 8, ... %C A236203 5, -3, 3, -1, 1, 1, -1, 3, -3, 5, -5, ... %C A236203 -8, 6, -4, 2, 0, -2, 4, -6, 8, -10, 12, ... %C A236203 14, -10, 6, -2, -2, 6, -10, 14, -18, 22, -26, ... %C A236203 -24, 16, -8, 0, 8, -16, 24, -32, 40, -48, 56, ... . %C A236203 a(n+2) gives the numerators of 0/1, 0/16, 3/4, 5/36, 8/9, 12/64, 15/16, 21/100, 24/25, 32/144, ... . The denominators are A097362(n+1)^2. (Compare A097362 to A029578.) %C A236203 Note the particular distribution of a(-n). Example: %C A236203 a(n-9) = 12,15, 5,8, 0,3, -3,0, -4,-1, -3,0, 0,3, 5,8, 12,15, ... . %C A236203 a(2n) + a(2n+1) = a(-2n-1) + a(-2n-2) = -4,0,8,20,36,56,80,... = 4*A000096(n-1). %C A236203 a(2n) + a(2n-1) = a(-2n) + a(-2n-1) = -5,-3,3,13,... = A001105(n) - A010716(n). %H A236203 Vincenzo Librandi, <a href="/A236203/b236203.txt">Table of n, a(n) for n = 2..1000</a> %H A236203 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1). %F A236203 a(n+2) = (period 8: repeat 1, 16, 1, 1, 1, 4, 1, 1)*A175628(n+1). %F A236203 a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12). %F A236203 a(n+4) - a(n-4) = 0, 8, 8, ... = A168397. %F A236203 From _Colin Barker_, Jan 26 2014: (Start) %F A236203 a(n) = (n^2 -4)/4 for n even, a(n) = (n^2 +2*n -15)/4 for n odd. %F A236203 G.f.: x^4*(3 + 2*x - 3*x^2)/ ((1-x)^3*(1+x)^2). (End) %F A236203 a(n) = (2*n^2 + 2*n - 19 - (2*n - 11)*(-1)^n)/8. - _Luce ETIENNE_, Jul 26 2014 %F A236203 Sum_{n>=4} (-1)^n/a(n) = 11/48. - _Amiram Eldar_, Aug 21 2022 %p A236203 seq( (2*n^2 +2*n -19 -(2*n-11)*(-1)^n)/8, n=2..60); # _G. C. Greubel_, Dec 04 2019 %t A236203 CoefficientList[Series[x^2(3x^2-2x-3)/((x-1)^3(x+1)^2), {x, 0, 60}], x] (* _Vincenzo Librandi_, Jul 27 2014 *) %t A236203 LinearRecurrence[{1,2,-2,-1,1},{0,0,3,5,8},60] (* _Harvey P. Dale_, Aug 30 2018 *) %o A236203 (PARI) concat([0,0], Vec(x^4*(3*x^2-2*x-3)/((x-1)^3*(x+1)^2) + O(x^60))) \\ _Colin Barker_, Jan 26 2014 %o A236203 (Magma) [(2*n^2 + 2*n - 19 - (2*n - 11)*(-1)^n)/8: n in [2..60]]; // _Vincenzo Librandi_, Jul 27 2014 %o A236203 (Sage) [(2*n^2 +2*n -19 -(2*n-11)*(-1)^n)/8 for n in (2..60)] # _G. C. Greubel_, Dec 04 2019 %o A236203 (GAP) List([2..60], n-> (2*n^2 +2*n -19 -(2*n-11)*(-1)^n)/8 ); # _G. C. Greubel_, Dec 04 2019 %Y A236203 Cf. A005843, A008590, A016825, A109613, A147658. %K A236203 nonn,easy %O A236203 2,3 %A A236203 _Paul Curtz_, Jan 20 2014 %E A236203 More terms from _Colin Barker_, Jan 26 2014