A236211 Numbers c > 0 for which there exist integers a > 1 and b > 1 such that the equation a^x - b^y = c has two solutions in positive integers x, y.
1, 3, 4, 5, 9, 10, 13, 89, 275, 1215, 4900
Offset: 1
Keywords
Examples
3 - 2 = 3^2 - 2^3 = 1. 2^3 - 5 = 2^7 - 5^3 = 3. 6 - 2 = 6^2 - 2^5 = 4. 2^3 - 3 = 2^5 - 3^3 = 5. 15 - 6 = 15^2 - 6^3 = 9. 13 - 3 = 13^3 - 3^7 = 10. 2^4 - 3 = 2^8 - 3^5 = 13. 91 - 2 = 91^2 - 2^13 = 89. 280 - 5 = 280^2 - 5^7 = 275. 6^4 - 3^4 = 6^5 - 3^8 = 1215. 4930 - 30 = 4930^2 - 30^5 = 4900.
References
- R. K. Guy, Unsolved Problems in Number Theory, D9.
- T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge University Press, 1986.
Links
- M. A. Bennett, On Some Exponential Equations of S. S. Pillai, Canad. J. Math., 53 (2001), 897-922.
- J.-H. Evertse, Review of M. A. Bennett's "On Some Exponential Equations of S. S. Pillai", zbMATH 0984.11014
- OEIS, Entries related to Pillai's equation
- M. Waldschmidt, Open Diophantine problems
- E. Weisstein's MathWorld, Pillai's Conjecture
Crossrefs
Cf. A207079 and the OEIS link.
Comments