cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236212 Floor of the value of Riemann's xi function at n.

This page as a plain text file.
%I A236212 #5 Feb 16 2025 08:33:21
%S A236212 0,0,0,0,0,0,1,1,2,3,5,8,13,21,36,63,113,206,386,736,1433,2849,5773,
%T A236212 11919,25059,53613,116658,258032,579856,1323273,3065246,7204159,
%U A236212 17172291,41498712,101635485,252180415,633710357,1612310803,4151993262,10819115820
%N A236212 Floor of the value of Riemann's xi function at n.
%C A236212 On the interval [1, infinity), the xi function takes real values and is (strictly) increasing, so a(n) <= a(n+1) for n >= 1.
%C A236212 Same as floor of the value of the xi function at 1-n, because of the functional equation xi(1-s) = x(s).
%H A236212 J. Sondow and C. Dumitrescu, <a href="http://arxiv.org/abs/1005.1104">A monotonicity property of Riemann's xi function and a reformulation of the Riemann Hypothesis</a>, Period. Math. Hungar. 60 (2010), 37-40.
%H A236212 E. Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/Xi-Function.html">Xi Function</a>
%H A236212 Wikipedia, <a href="https://en.wikipedia.org/wiki/Riemann_Xi_function">Riemann Xi function</a>
%H A236212 <a href="/index/Z#zeta_function">Index entries for zeta function</a>
%F A236212 a(n) = [xi(n)] for n > 0.
%e A236212 xi(1) = 1/2, so a(1) = [0.5] = 0.
%e A236212 xi(8) = (4*Pi^4)/225 = 1.7317…, so a(8) = [1.7] = 1.
%t A236212 xi[ s_] := If[ s == 1, 1/2, (s/2)*(s - 1)*Pi^(-s/2)*Gamma[ s/2]*Zeta[ s]]; Table[ Floor[ xi[ n]], {n, 40}]
%Y A236212 Cf. A002410.
%K A236212 nonn
%O A236212 1,9
%A A236212 _Jonathan Sondow_, Jan 25 2014