A236247 Sequence of distinct least squares such that the arithmetic mean of the first n squares is also a square.
1, 49, 25, 121, 784, 196, 33124, 4900, 4, 4356, 2304324, 213444, 2371600, 379456, 87616, 360000, 3802500, 562500, 100, 532900, 5456896, 767376, 5934096, 992016, 9947716, 1350244, 32467204, 44100, 2414916, 10458756, 2683044
Offset: 1
Keywords
Examples
a(1) = 1. a(2) is the smallest unused square such that (a(2)+a(1))/2 is a square. So, a(2) = 49. a(3) is the smallest unused square such that (a(3)+a(2)+a(1))/3 is a square. So, a(3) = 25. ...and so on.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..200
Programs
-
Python
def Sq(x): for n in range(10**15): if x == n**2: return True if x < n**2: return False return False def SqAve(init): print(init) lst = [] lst.append(init) n = 1 while n < 10**9: if n**2 not in lst: if Sq(((sum(lst)+n**2)/(len(lst)+1))): print(n**2) lst.append(n**2) n = 1 else: n += 1 else: n += 1 SqAve(1)
Formula
a(n) = A141391(n)^2