This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A236250 #24 Nov 19 2023 21:15:59 %S A236250 1,6,13,112,51,24,15088,12284,88460,1204,459,31824,93210,1864254, %T A236250 531648,456036,8299090,28574910,1813560,32552820,33166008,133585180, %U A236250 2503410,214098720,3183870690,7411133309730,4852769490690,2294509753536,175964053944,3336533898768 %N A236250 Period of the n-th convergent to the continued fraction expansion of Pi. %F A236250 a(n) = A007732(A002486(n+2)). - _Michel Marcus_, Jan 21 2014 %e A236250 The 2nd convergent is 22/7 = 3.142857 142857 ..., whose period is 6, so a(2) = 6. %e A236250 The 3rd convergent is 333/106 = 3.1 4150943396226 4150943396226 ..., whose period is 13, so a(3) = 13. %o A236250 (Sage) %o A236250 st_clenov = 30 %o A236250 def A236250(n) : %o A236250 vu = continued_fraction_list(pi, nterms=st_clenov); %o A236250 p = [] %o A236250 for i in (0..n) : %o A236250 p.append(convergents(vu)[i].period()) %o A236250 return(p) %o A236250 A236250(st_clenov-1); %Y A236250 Cf. A001203, A007732, A084407. %K A236250 nonn,base %O A236250 1,2 %A A236250 _Jani Melik_, Jan 21 2014