This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A236257 #36 Nov 14 2024 10:07:54 %S A236257 9,4,3,6,13,24,39,58,81,108,139,174,213,256,303,354,409,468,531,598, %T A236257 669,744,823,906,993,1084,1179,1278,1381,1488,1599,1714,1833,1956, %U A236257 2083,2214,2349,2488,2631,2778,2929,3084,3243,3406,3573,3744,3919,4098,4281,4468 %N A236257 a(n) = 2*n^2 - 7*n + 9. %C A236257 If zero polygonal numbers are ignored, then for n >= 3, the a(n)-th n-gonal number is a sum of the (a(n)-1)-th n-gonal number and the (2*n-3)-th n-gonal number. %H A236257 Michael De Vlieger, <a href="/A236257/b236257.txt">Table of n, a(n) for n = 0..10000</a> %H A236257 W. Burrows, C. Tuffley, <a href="http://arxiv.org/abs/1502.06664">Maximising common fixtures in a round robin tournament with two divisions</a>, arXiv preprint arXiv:1502.06664 [math.CO], 2015. %H A236257 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A236257 From _Colin Barker_, Jan 21 2014: (Start) %F A236257 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). %F A236257 G.f.: -(18*x^2 - 23*x + 9)/(x-1)^3. (End) %F A236257 E.g.f.: exp(x)*(9 - 5*x + 2*x^2). - _Elmo R. Oliveira_, Nov 13 2024 %e A236257 a(7)=58. This means that the 58th heptagonal number 8323 (cf. A000566) is a sum of two heptagonal numbers. We have 8323 = 8037 + 286 with indices in A000566 58,57,11. %t A236257 Table[2 n^2 - 7 n + 9, {n, 0, 48}] (* _Michael De Vlieger_, Apr 19 2015 *) %t A236257 LinearRecurrence[{3,-3,1},{9,4,3},50] (* _Harvey P. Dale_, Nov 24 2017 *) %o A236257 (PARI) Vec(-(18*x^2-23*x+9)/(x-1)^3 + O(x^100)) \\ _Colin Barker_, Jan 21 2014 %Y A236257 Cf. A000217, A000290, A000326, A000384, A000566, A000567, A001106, A001107, A051624, A051682, A051865-A051876, A152948. %K A236257 nonn,easy %O A236257 0,1 %A A236257 _Vladimir Shevelev_, Jan 21 2014