cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236264 Even indices of Fibonacci numbers which are the sum of two squares.

This page as a plain text file.
%I A236264 #38 Jun 28 2022 01:48:18
%S A236264 0,2,6,12,14,26,38,62,74,86,98,122,134,146,158,182,222,254,326,338,
%T A236264 366,398,446,614,626,698,722,794,866,1022,1046,1082,1226,1238,1418,
%U A236264 1646,1814,2174,2246,2258,2294,2426,2558
%N A236264 Even indices of Fibonacci numbers which are the sum of two squares.
%C A236264 The first 10 such Fibonacci numbers are 0, 1, 8, 144, 377, 121393, 39088169, 4052739537881, 1304969544928657, 420196140727489673.
%C A236264 Ballot & Luca (Proposition 1) show that this sequence has asymptotic density 0. - _Charles R Greathouse IV_, Jan 21 2014
%C A236264 a(43) >= 2558. Determining this term requires factoring the Lucas number L_1279. - _Charles R Greathouse IV_, Jan 21 2014
%C A236264 3002 <= a(44) <= 3302. 3302, 3698, 4898 are terms. - _Chai Wah Wu_, Jul 23 2020
%H A236264 Christian Ballot and Florian Luca, <a href="http://dx.doi.org/10.4064/aa127-2-4">On the equation x^2+dy^2=Fn</a>, Acta Arith. 127 (2007), 145-155.
%H A236264 Kevin O'Bryant, <a href="http://mathoverflow.net/questions/67601">Which Fibonacci numbers are the sum of two squares?</a>, MathOverflow.
%F A236264 a(n) = 2*A124132(n-1).
%e A236264 Fibonacci(14) = 377 = 19^2 + 4^2, so 14 is in the sequence.
%t A236264 Reap[For[n = 0, n <= 400, n = n+2, If[Reduce[Fibonacci[n] == x^2 + y^2, {x, y}, Integers] =!= False, Print[n]; Sow[n]]]][[2, 1]]
%o A236264 (PARI) is(n)=if(n%2, return(0)); my(f=factor(fibonacci(n))); for(i=1,#f~, if(f[i,1]%4==3 && f[i,2]%2, return(0))); 1 \\ _Charles R Greathouse IV_, Jan 21 2014
%o A236264 (PARI) default(factor_add_primes, 1);
%o A236264 is(n)={
%o A236264     if(n%2,return(0));
%o A236264     my(f=fibonacci(n),t);
%o A236264     if(f%4==3,return(0));
%o A236264     forprime(p=2,min(log(f)^2,1e5),
%o A236264         if(f%p==0,
%o A236264             t=valuation(f,p);
%o A236264             if(p%4==3&&t%2,return(0));
%o A236264             f/=p^t;
%o A236264             if(f%4==3,return(0))
%o A236264         )
%o A236264     );
%o A236264     fordiv(n,d,
%o A236264         if(d==n, break);
%o A236264         t=factor(fibonacci(d))[,1];
%o A236264         for(i=1,#t,
%o A236264             if(t[i]%4==3 && valuation(f,t[i])%2, return(0));
%o A236264             f/=t[i]^valuation(f,t[i]);
%o A236264             if(f%4==3,return(0))
%o A236264         )
%o A236264     );
%o A236264     f=factor(f);
%o A236264     for(i=1,#f[,1],
%o A236264         if(f[i,2]%2&&f[i,1]%4==3,return(0))
%o A236264     );
%o A236264     1
%o A236264 }; \\ _Charles R Greathouse IV_, Jan 21 2014
%o A236264 (Python)
%o A236264 from itertools import count, islice
%o A236264 from sympy import factorint, fibonacci
%o A236264 def A236264_gen(): # generator of terms
%o A236264     return filter(lambda n:all(p & 3 != 3 or e & 1 == 0 for p, e in factorint(fibonacci(n)).items()),count(0,2))
%o A236264 a236264_list = list(islice(A236264_gen(),10)) # _Chai Wah Wu_, Jun 27 2022
%Y A236264 Cf. A000045, A001481, A124132.
%K A236264 nonn,more
%O A236264 1,2
%A A236264 _Jean-François Alcover_, Jan 21 2014
%E A236264 a(32)-a(42) from _Charles R Greathouse IV_, Jan 21 2014
%E A236264 a(43) from _Chai Wah Wu_, Jul 23 2020