This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A236327 #13 Jul 12 2014 16:46:03 %S A236327 2,8,19,30,32,38,49,60,62,68,79,90,92,98,109,120,122,128,139,150,152, %T A236327 158,169,180,182,188,199,210,212,218,229,240,242,248,259,270,272,278, %U A236327 289,300,302,308,319,330,332,338,349,360,362,368,379,390,392,398,409,420,422,428,439,450,452,458,469,480,482,488 %N A236327 a(n)*Pi is the total length of irregular spiral (center points: 1, 2, 3, 4, 5; pattern 2) after n rotations. %C A236327 Let points 1, 2, 3, 4 & 5 be placed on a straight line at intervals of 1 unit. At point 1 make a half unit circle then at point 2 make another half circle; by selecting radius point on the right hand side of point 1 (pattern 2); at point 3 make another half circle and maintain continuity of circumferences. Continue using this procedure at point 4, 5, 1, ... and so on. %C A236327 Conjecture: All forms of 120 permutations 5 center points are non-expanded loops. %H A236327 Kival Ngaokrajang, <a href="/A236327/a236327.pdf">Illustration of irregular spiral (center points: 1, 2, 3, 4, 5)</a>Pattern 2. %F A236327 Conjecture from _Colin Barker_, Jul 12 2014: (Start) %F A236327 a(n) = a(n-1)+a(n-4)-a(n-5). %F A236327 G.f.: x*(11*x^3+11*x^2+6*x+2) / ((x-1)^2*(x+1)*(x^2+1)). (End) %o A236327 (Small Basic) %o A236327 n =5 'center points number 1<=n<=9 %o A236327 pt=1 'pattern1: pt=-1; pattern2: pt=1 %o A236327 i=12345 'center points order %o A236327 rota=100 'rotations %o A236327 sum=0 %o A236327 rc=1 %o A236327 r[1]=1 %o A236327 For i1 = 1 To n %o A236327 d1=i/Math.Power(10,1) %o A236327 i=math.Floor(d1) %o A236327 d[i1]=(d1-i)*Math.Power(10,1) %o A236327 EndFor %o A236327 For j1=1 To n %o A236327 For j2=1 To n %o A236327 If d[j1]=j2 Then %o A236327 dd[j2]=j1 %o A236327 endif %o A236327 EndFor %o A236327 EndFor %o A236327 For j3=1 To n %o A236327 If j3=n Then %o A236327 dxy[j3]=dd[j3]-dd[1] %o A236327 Else %o A236327 dxy[j3]=dd[j3]-dd[j3+1] %o A236327 EndIf %o A236327 EndFor %o A236327 For k1=1 To rota*n %o A236327 cc=Math.Floor((k1-1)/n) %o A236327 p[k1]=r[k1]+pt*dxy[k1-cc*n]*Math.Power(-1,Math.Remainder(k1,2)) %o A236327 r[k1+1]=p[k1] %o A236327 sum=sum+math.Abs(r[k1]) %o A236327 If math.Abs(r[k1])>0 Then %o A236327 rc=rc+1 %o A236327 EndIf %o A236327 If rc=3 Then %o A236327 TextWindow.Write(sum+", ") %o A236327 rc=1 %o A236327 EndIf %o A236327 EndFor %Y A236327 Cf. A014105 (2 center points); A234902, A234903, A234904 (3 center points); A235088, A235089 (4 center points). %K A236327 nonn %O A236327 1,1 %A A236327 _Kival Ngaokrajang_, Jan 22 2014