cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236336 Lexicographically earliest increasing sequence of positive integers whose graph has no three collinear points.

This page as a plain text file.
%I A236336 #20 Apr 28 2019 18:25:10
%S A236336 1,2,4,5,9,12,16,22,26,33,38,45,53,60,61,76,86,91,92,97,111,112,121,
%T A236336 134,135,147,148,150,153,157,167,180,200,212,223,227,228,238,246,264,
%U A236336 269,282,286,305,312,313,321,322,327,328,360,374,389,393,395,420,421
%N A236336 Lexicographically earliest increasing sequence of positive integers whose graph has no three collinear points.
%C A236336 An increasing version of A236335.
%H A236336 Alois P. Heinz, <a href="/A236336/b236336.txt">Table of n, a(n) for n = 1..10000</a>
%e A236336 Consider a(5). The previous terms are 1,2,4,5. The value of a(5) can't be 6 because points (3,4),(4,5),(5,6) (corresponding to values a(3),a(4),a(5)) are on the same line: y=x+1. Points (1,1),(3,4),(5,7) are on the same line y=3x/2-1/2, so a(5) can't be 7. Points (2,2),(3,4),(5,8) are on the same line: y=2x-2, so a(5) can't be 8. Thus a(5)=5.
%p A236336 a:= proc(n) option remember; local i, j, k, ok;
%p A236336       if n<3 then n
%p A236336     else for k from 1+a(n-1) do ok:=true;
%p A236336            for j from n-1 to 2 by -1 while ok do
%p A236336              for i from j-1 to 1 by -1 while ok do
%p A236336                ok:= (n-j)*(a(j)-a(i))<>(j-i)*(k-a(j)) od
%p A236336            od; if ok then return k fi
%p A236336          od
%p A236336       fi
%p A236336     end:
%p A236336 seq(a(n), n=1..70);  # _Alois P. Heinz_, Jan 23 2014
%t A236336 g[1] = 1;
%t A236336 g[n_] := g[n] =
%t A236336   Min[Complement[Range[g[n - 1] + 1, 500],
%t A236336     Select[Flatten[
%t A236336       Table[g[k] + (n - k) (g[j] - g[k])/(j - k), {k, n - 2}, {j,
%t A236336         k + 1, n - 1}]], IntegerQ[#] &]]]
%t A236336 Table[g[k], {k, 50}]
%Y A236336 Cf. A229037, A185256, A236335.
%K A236336 nonn
%O A236336 1,2
%A A236336 _Tanya Khovanova_, Jan 22 2014