A236344 a(n) = |{0 < k < n: m = phi(k)/2 + phi(n-k)/12 is an integer with 2^m + prime(m) prime}|, where phi(.) is Euler's totient function.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 3, 4, 2, 4, 3, 5, 2, 3, 4, 3, 3, 4, 6, 5, 6, 6, 7, 7, 5, 4, 6, 6, 5, 7, 5, 3, 3, 3, 7, 4, 5, 5, 8, 4, 6, 5, 5, 5, 6, 4, 5, 4, 5, 4, 3, 4, 5, 6, 3, 6, 9, 6, 9, 8, 13, 5, 11, 5, 6, 7, 11, 4, 9, 9, 5, 6, 6, 11, 7, 8, 9, 9, 4
Offset: 1
Keywords
Examples
a(26) = 1 since phi(5)/2 + phi(21)/12 = 2 + 1 = 3 with 2^3 + prime(3) = 8 + 5 = 13 prime. a(5907) = 1 since phi(3944)/2 + phi(5907-3944)/12 = 896 + 150 = 1046 with 2^(1046) + prime(1046) = 2^(1046) + 8353 prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
p[n_]:=IntegerQ[n]&&PrimeQ[2^n+Prime[n]] f[n_,k_]:=EulerPhi[k]/2+EulerPhi[n-k]/12 a[n_]:=Sum[If[p[f[n,k]],1,0],{k,1,n-1}] Table[a[n],{n,1,100}]
Comments