A236347 Manhattan distances between n and 2*n in a left-aligned triangle with next M natural numbers in row M: 1, 2 3, 4 5 6, 7 8 9 10, etc.
1, 1, 2, 2, 3, 3, 4, 3, 2, 3, 2, 3, 4, 5, 6, 5, 6, 7, 5, 4, 3, 9, 4, 3, 4, 5, 6, 10, 5, 6, 7, 8, 9, 8, 7, 6, 10, 11, 12, 6, 5, 4, 5, 6, 7, 4, 5, 6, 7, 8, 9, 10, 12, 11, 10, 10, 11, 12, 13, 14, 9, 8, 7, 6, 5, 6, 17, 18, 6, 5, 6, 7, 8, 9, 10, 11, 16, 15, 9, 10, 11, 12
Offset: 1
Keywords
Examples
Triangle in which we find distances begins: _1 _2 3 _4 5 6 _7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
Links
- David Radcliffe, Table of n, a(n) for n = 1..10000
Programs
-
Python
import math def getXY(n): y = int(math.sqrt(n*2)) if n<=y*(y+1)//2: y-=1 x = n - y*(y+1)//2 return x, y for n in range(1,88): ox, oy = getXY(n) nx, ny = getXY(2*n) print(abs(nx-ox)+abs(ny-oy), end=', ')