cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236360 Numerator of the mean of all parts of all partitions of n.

This page as a plain text file.
%I A236360 #11 Feb 06 2014 09:14:36
%S A236360 1,4,3,5,7,66,35,88,135,35,56,44,1313,63,220,48,1683,3465,4655,1254,
%T A236360 4158,7348,28865,2700,48950,10556,13545,14872,132385,168120,212102,
%U A236360 89056,111573,209270,520905,323586,800569,988570,1216215,35560,1827903,744436
%N A236360 Numerator of the mean of all parts of all partitions of n.
%C A236360 The arithmetic mean, M(n), of all parts of all partitions of n can be approximated by n^e(n), as typified by these pairs:
%C A236360 n ..... 100 .... 1000 .... 2000 .... 3000 .... 4000 .... 5000
%C A236360 e(n) .. 0.331 .. 0.3410 .. 0.3447 .. 0.3468 .. 0.3483 .. 0.3495
%H A236360 Alois P. Heinz, <a href="/A236360/b236360.txt">Table of n, a(n) for n = 1..1000</a>
%F A236360 M(n) = A066186(n)/A006128(n).
%e A236360 First eight means:  1, 4/3, 3/2, 5/3, 7/4, 66/35, 35/18, 88/43.
%p A236360 b:= proc(n, i) option remember; `if`(n=0, [1, 0$2],
%p A236360       `if`(i<1, [0$3], b(n, i-1)+`if`(i>n, [0$3],
%p A236360        (l-> l+[0, l[1]*i, l[1]])(b(n-i, i)))))
%p A236360     end:
%p A236360 a:= n-> numer((l->l[2]/l[3])(b(n$2))):
%p A236360 seq(a(n), n=1..50);  # _Alois P. Heinz_, Feb 06 2014
%t A236360 f[n_] := Sum[DivisorSigma[0, m] PartitionsP[n - m], {m, 1, n}]; u =  PartitionsP[Range[50]] Range[50]; t = Table[u[[n]]/f[n], {n, 1, 50}]
%t A236360 Numerator[t]    (*A236360*)
%t A236360 Denominator[t]  (*A234361*)
%t A236360 means = Map[Mean[Flatten[IntegerPartitions[#]]] &, Range[50]]; pwrLaw = a x^b; fit = FindFit[means, pwrLaw, {a, b}, x]; Show[{ListPlot[means], Plot[Function[{x}, Evaluate[pwrLaw /. fit]][x], {x, 1, Length[means]}]}]
%t A236360 fit  (* _Peter J. C. Moses_, Jan 22 2014 *)
%Y A236360 Cf. A006128, A066186, A236361.
%K A236360 nonn,frac,easy
%O A236360 1,2
%A A236360 _Clark Kimberling_, Jan 24 2014