A236374 a(n) = |{0 < k < n: m = phi(k)/2 + phi(n-k)/8 is an integer with 2^(m-1)*phi(m) - 1 prime}|, where phi(.) is Euler's totient function.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 2, 1, 2, 2, 2, 4, 2, 1, 0, 2, 1, 2, 3, 3, 3, 4, 2, 2, 2, 3, 5, 3, 4, 4, 1, 1, 2, 3, 7, 4, 3, 5, 3, 3, 2, 4, 5, 4, 3, 4, 3, 2, 6, 7, 5, 5, 4, 4, 5, 4, 5, 5, 3, 7, 3, 5, 1, 7, 4, 7, 7, 5, 9, 5, 9, 3, 3, 5, 13, 7, 9, 7, 3, 4, 10, 10, 9, 11
Offset: 1
Keywords
Examples
a(24) = 1 since phi(8)/2 + phi(16)/8 = 3 with 2^(3-1)*phi(3) - 1 = 7 prime. a(33) = 1 since phi(13)/2 + phi(20)/8 = 7 with 2^(7-1)*phi(7) - 1 = 383 prime. a(79) = 1 since phi(27)/2 + phi(52)/8 = 9 + 3 = 12 with 2^(12-1)*phi(12) - 1 = 2^(13) - 1 = 8191 prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
q[n_]:=IntegerQ[n]&&PrimeQ[2^(n-1)*EulerPhi[n]-1] f[n_,k_]:=EulerPhi[k]/2+EulerPhi[n-k]/8 a[n_]:=Sum[If[q[f[n,k]],1,0],{k,1,n-1}] Table[a[n],{n,1,100}]
Comments