A236375 Positive integers m with 2^(m-1)*phi(m) - 1 prime, where phi(.) is Euler's totient function.
3, 7, 12, 15, 18, 31, 42, 108, 124, 140, 143, 155, 207, 327, 386, 463, 514, 823, 925, 1035, 1393, 1425, 2425, 3873, 5091, 5314, 5946, 12813, 14198, 15823, 19932, 22747, 37989, 38772
Offset: 1
Keywords
Examples
a(1) = 3 since neither 2^(1-1)*phi(1) - 1 = 0 nor 2^(2-1)*phi(2) - 1 = 1 is prime, but 2^(3-1)*phi(3) - 1 = 4*2 - 1 = 7 is prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..34
Programs
-
Mathematica
q[m_]:=PrimeQ[2^(m-1)*EulerPhi[m]-1] n=0;Do[If[q[m],n=n+1;Print[n," ",m]],{m,1,10000}]
-
PARI
s=[]; for(m=1, 1000, if(isprime(2^(m-1)*eulerphi(m)-1), s=concat(s, m))); s \\ Colin Barker, Jan 24 2014
Comments