cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236375 Positive integers m with 2^(m-1)*phi(m) - 1 prime, where phi(.) is Euler's totient function.

Original entry on oeis.org

3, 7, 12, 15, 18, 31, 42, 108, 124, 140, 143, 155, 207, 327, 386, 463, 514, 823, 925, 1035, 1393, 1425, 2425, 3873, 5091, 5314, 5946, 12813, 14198, 15823, 19932, 22747, 37989, 38772
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 24 2014

Keywords

Comments

According to the conjecture in A236374, this sequence should have infinitely many terms.
The prime 2^(a(34)-1)*phi(a(34)) - 1 = 2^(38771)*12888 - 1 has 11676 decimal digits.

Examples

			a(1) = 3 since neither 2^(1-1)*phi(1) - 1 = 0 nor 2^(2-1)*phi(2) - 1 = 1 is prime, but 2^(3-1)*phi(3) - 1 = 4*2 - 1 = 7 is prime.
		

Crossrefs

Programs

  • Mathematica
    q[m_]:=PrimeQ[2^(m-1)*EulerPhi[m]-1]
    n=0;Do[If[q[m],n=n+1;Print[n," ",m]],{m,1,10000}]
  • PARI
    s=[]; for(m=1, 1000, if(isprime(2^(m-1)*eulerphi(m)-1), s=concat(s, m))); s \\ Colin Barker, Jan 24 2014