A236376 Riordan array ((1-x+x^2)/(1-x)^2, x/(1-x)^2).
1, 1, 1, 2, 3, 1, 3, 7, 5, 1, 4, 14, 16, 7, 1, 5, 25, 41, 29, 9, 1, 6, 41, 91, 92, 46, 11, 1, 7, 63, 182, 246, 175, 67, 13, 1, 8, 92, 336, 582, 550, 298, 92, 15, 1, 9, 129, 582, 1254, 1507, 1079, 469, 121, 17, 1, 10, 175, 957, 2508, 3718, 3367, 1925, 696, 154
Offset: 0
Examples
Triangle begins: 1; 1, 1; 2, 3, 1; 3, 7, 5, 1; 4, 14, 16, 7, 1; 5, 25, 41, 29, 9, 1; 6, 41, 91, 92, 46, 11, 1; 7, 63, 182, 246, 175, 67, 13, 1;
Crossrefs
Programs
-
Maple
# The function RiordanSquare is defined in A321620. RiordanSquare(1+x/(1-x)^2, 8); # Peter Luschny, Mar 06 2022
-
Mathematica
CoefficientList[#, y] & /@ CoefficientList[ Series[(1 - x + x^2)/(1 - 2*x - x*y + x^2), {x, 0, 12}], x] (* Wouter Meeussen, Jan 25 2014 *)
Formula
G.f.: (1 - x + x^2)/(1 - 2*x - x*y + x^2).
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k), T(0,0) = T(1,0) = T(1,1) = 1, T(2,0) = 2, T(2,1) = 3, T(2,2) = 1, T(n,k) = 0 if k < 0 or k > n.
The Riordan square (see A321620) of 1 + x/(1 - x)^2. - Peter Luschny, Mar 06 2022
Comments