A236384 Number of non-congruent integer triangles with base length n whose apex lies on or within a space bounded by a semicircle of diameter n.
0, 0, 1, 1, 3, 4, 5, 7, 10, 13, 15, 17, 22, 25, 30, 33, 38, 42, 48, 54, 58, 65, 71, 76, 85, 92, 100, 106, 114, 123, 130, 140, 149, 159, 170, 177, 189, 197, 211, 222, 231, 243, 255, 269, 282, 292, 306, 318, 333, 348, 364, 378, 391, 406, 420, 438, 453, 470, 485
Offset: 1
Keywords
Examples
a(5)=3 as there are 3 non-congruent integer triangles with base length 5 whose apex lies on or within the space bounded by the semicircle of diameter 5. The integer triples are (2,4,5), (3,3,5), (3,4,5).
Links
- Giovanni Resta, Table of n, a(n) for n = 1..1000
Programs
-
GeoGebra
c = Slider(1, 20, 1); L = Flatten(Sequence(Sequence(((a^2+c^2-(c-a+k)^2)/(2c),((a+(c-a+k)+c)(a+(c-a+k)-c)(a-(c-a+k)+c)(-a+(c-a+k)+c))^(1/2)/(2c)),a,k,(c+k)/2),k,1,c)); C = {Circle((c/2,0),c/2)}; a_n = CountIf(IsInRegion((x(A),y(A)),Element(C,1)),A,L); # Frank M Jackson, Jan 01 2024
-
Mathematica
sumtriangles[c_] := (n=0; Do[If[a^2+b^2<=c^2, n++], {b, 1, c}, {a, c-b+1, b}]; n); Table[sumtriangles[m], {m, 1, 200}]
-
PARI
a(n)=sum(a=2,n,sum(b=max(a,n+1-a),n,a^2+b^2<=n^2)) \\ Charles R Greathouse IV, Mar 26 2014
-
PARI
a(n)=sum(a=2,n,max(min(sqrtint(n^2-a^2),n)-max(a,n+1-a)+1,0)) \\ Charles R Greathouse IV, Mar 26 2014
Comments