This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A236386 #27 Mar 03 2023 06:34:10 %S A236386 3,4,6,7,9,13,14,18,21,25,26,28,31,33,36,42,43,44,49,50,62,66,73,86, %T A236386 87,91,95,98,111,116,117,121,135,146,148,152,157,161,169,174,182,190, %U A236386 201,207,211,216,222,228,234,237,241,242,252,268,270,287,289,305 %N A236386 Numbers m such that phi(m) is an oblong number. %C A236386 An oblong number (A002378) is of the form k*(k+1) where k is a natural number. %C A236386 From _Bernard Schott_, Feb 27 2023: (Start) %C A236386 Subsequence of primes is A002383 because in this case phi(k^2+k+1) = k*(k+1). %C A236386 Subsequence of oblong numbers is A359847 where k and phi(k) are both oblong numbers. (End) %H A236386 Giovanni Resta, <a href="/A236386/b236386.txt">Table of n, a(n) for n = 1..10000</a> %e A236386 phi(13) = 12 = 3*4, an oblong number; so 13 is a term of the sequence. %p A236386 filter := m -> issqr(1 + 4*phi(m)) : select(filter, [$(1 .. 700)]); # _Bernard Schott_, Feb 26 2023 %t A236386 Select[Range[500], IntegerQ@Sqrt[1 + 4*EulerPhi[#]] &] (* _Giovanni Resta_, Jan 24 2014 *) %o A236386 (PARI) isok(m) = my(t=eulerphi(m)); !(t%2) && ispolygonal(t/2, 3); \\ _Michel Marcus_, Feb 27 2023 %o A236386 (Python) %o A236386 from itertools import count, islice %o A236386 from sympy.ntheory.primetest import is_square %o A236386 from sympy import totient %o A236386 def A236386_gen(startvalue=1): # generator of terms >= startvalue %o A236386 return filter(lambda n:is_square((totient(n)<<2)+1), count(max(1,startvalue))) %o A236386 A236386_list = list(islice(A236386_gen(),20)) # _Chai Wah Wu_, Feb 28 2023 %Y A236386 Cf. A000010, A002378, A002383, A359847. %Y A236386 Similar, but where phi(m) is: A039770 (square), A039771 (cube), A078164 (biquadrate), A096503 (repdigit), A117296 (palindrome), A360944 (triangular). %K A236386 nonn,easy %O A236386 1,1 %A A236386 _Joseph L. Pe_, Jan 24 2014 %E A236386 a(16)-a(58) from _Giovanni Resta_, Jan 24 2014