This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A236400 #20 Jan 03 2022 16:59:21 %S A236400 2,3,5,7,11,23,31,67,227,373,10331,274453 %N A236400 Primes p=prime(k) such that min{r_p, p-r_p} <= 2, where r_p = A100612(k). %C A236400 No further terms < 5*10^6. - _Michael S. Branicky_, Jan 03 2022 %H A236400 Romeo Mestrovic, <a href="http://arxiv.org/abs/1312.7037">Variations of Kurepa's left factorial hypothesis</a>, arXiv preprint arXiv:1312.7037 [math.NT], 2013-2014. %H A236400 Miodrag Zivkovic, <a href="https://doi.org/10.1090/S0025-5718-99-00990-4">The number of primes sum_{i=1..n} (-1)^(n-i)*i! is finite</a>, Math. Comp. 68 (1999), pp. 403-409. %p A236400 A100612 := proc(n) %p A236400 local p,lf,kf,k ; %p A236400 p := ithprime(n) ; %p A236400 lf := 1 ; %p A236400 kf := 1 ; %p A236400 for k from 1 to p-1 do %p A236400 kf := modp(kf*k,p) ; %p A236400 lf := lf+modp(kf,p) ; %p A236400 end do: %p A236400 lf mod p ; %p A236400 end proc: %p A236400 for n from 1 do %p A236400 p := ithprime(n) ; %p A236400 rp := A100612(n) ; %p A236400 prp := p-rp ; %p A236400 if min(rp,prp) <= 2 then %p A236400 print(p) ; %p A236400 end if; %p A236400 end do: # _R. J. Mathar_, Feb 17 2014 %t A236400 A100612[n_] := Module[{p = Prime[n], lf = 1, kf = 1, k}, For[k = 1, k <= p - 1, k++, kf = Mod[kf*k, p]; lf = lf + Mod[kf, p]]; Mod[lf, p]]; %t A236400 Reap[For[n = 1, n < 40000, n++, p = Prime[n]; rp = A100612[n]; If[Min[rp, p - rp] <= 2, Print[p]; Sow[p]]]][[2, 1]] (* _Jean-François Alcover_, Dec 05 2017, after _R. J. Mathar_ *) %o A236400 (Python) %o A236400 from sympy import isprime %o A236400 def afind(limit): %o A236400 f = 1 # (p-1)! %o A236400 s = 2 # sum(0! + 1! + ... + (p-1)!) %o A236400 for p in range(2, limit+1): %o A236400 if isprime(p): %o A236400 r_p = s%p %o A236400 if min(r_p, p-r_p) <= 2: %o A236400 print(p, end=", ") %o A236400 s += f*p %o A236400 f *= p %o A236400 afind(11000) # _Michael S. Branicky_, Jan 03 2022 %Y A236400 Cf. A003422, A236399, A100612. %K A236400 nonn,more %O A236400 1,1 %A A236400 _N. J. A. Sloane_, Jan 29 2014 %E A236400 a(12) from _Jean-François Alcover_, Dec 05 2017