A236419 a(n) = |{0 < k < n: r = phi(k) + phi(n-k)/6 + 1 and p(r) + q(r) are both prime}|, where phi(.) is Euler's totient function, p(.) is the partition function (A000041) and q(.) is the strict partition function (A000009).
0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 2, 1, 0, 1, 0, 2, 0, 1, 1, 0, 0, 4, 1, 2, 1, 0, 2, 3
Offset: 1
Keywords
Examples
a(15) = 1 since phi(1) + phi(14)/6 + 1 = 3 with p(3) + q(3) = 3 + 2 = 5 prime. a(54) = 1 since phi(41) + phi(13)/6 + 1 = 43 with p(43) + q(43) = 63261 + 1610 = 64871 prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
Programs
-
Mathematica
pq[n_]:=PrimeQ[n]&&PrimeQ[PartitionsP[n]+PartitionsQ[n]] f[n_,k_]:=EulerPhi[k]+EulerPhi[n-k]/6+1 a[n_]:=Sum[If[pq[f[n,k]],1,0],{k,1,n-1}] Table[a[n],{n,1,100}]
Comments