This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A236437 #22 May 22 2025 10:21:36 %S A236437 2,263,269,347,397,431,461,479,499,569,599,607,677,683,719,769,797, %T A236437 821,929,941,1019,1031,1049,1051,1061,1069,1103,1181,1223,1229,1237, %U A236437 1297,1307,1367,1399,1409,1439,1453,1487,1489,1523,1553,1559,1571,1619,1637,1733,1759,1811,1823,1949,1973,1997 %N A236437 Primes which occur in their proper place in A236174. %C A236437 Primes p such that A236174(k) = prime(k) for some k. The values of k are (essentially) given in A235377. %C A236437 Same as A052033 if the initial 2 is omitted. %H A236437 Chai Wah Wu, <a href="/A236437/b236437.txt">Table of n, a(n) for n = 1..10000</a> %e A236437 263 is the 56th prime and is also the 56th term in A236174. %o A236437 (Python) %o A236437 from sympy import prime, isprime %o A236437 def A236174(n): %o A236437 p = prime(n) %o A236437 for b in range(2,11): %o A236437 x, y, z = p, 0, 1 %o A236437 while x >= b: %o A236437 x, r = divmod(x,b) %o A236437 y += r*z %o A236437 z *= 10 %o A236437 y += x*z %o A236437 if isprime(y): %o A236437 return y %o A236437 A236437_list = [prime(n) for n in range(1,10**6) if A236174(n) == prime(n)] %o A236437 # _Chai Wah Wu_, Jan 03 2015 %Y A236437 Cf. A052033, A236174, A235377, A235354. %K A236437 nonn,base %O A236437 1,1 %A A236437 _N. J. A. Sloane_, Jan 25 2014