cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236437 Primes which occur in their proper place in A236174.

This page as a plain text file.
%I A236437 #22 May 22 2025 10:21:36
%S A236437 2,263,269,347,397,431,461,479,499,569,599,607,677,683,719,769,797,
%T A236437 821,929,941,1019,1031,1049,1051,1061,1069,1103,1181,1223,1229,1237,
%U A236437 1297,1307,1367,1399,1409,1439,1453,1487,1489,1523,1553,1559,1571,1619,1637,1733,1759,1811,1823,1949,1973,1997
%N A236437 Primes which occur in their proper place in A236174.
%C A236437 Primes p such that A236174(k) = prime(k) for some k. The values of k are (essentially) given in A235377.
%C A236437 Same as A052033 if the initial 2 is omitted.
%H A236437 Chai Wah Wu, <a href="/A236437/b236437.txt">Table of n, a(n) for n = 1..10000</a>
%e A236437 263 is the 56th prime and is also the 56th term in A236174.
%o A236437 (Python)
%o A236437 from sympy import prime, isprime
%o A236437 def A236174(n):
%o A236437     p = prime(n)
%o A236437     for b in range(2,11):
%o A236437         x, y, z = p, 0, 1
%o A236437         while x >= b:
%o A236437             x, r = divmod(x,b)
%o A236437             y += r*z
%o A236437             z *= 10
%o A236437         y += x*z
%o A236437         if isprime(y):
%o A236437             return y
%o A236437 A236437_list = [prime(n) for n in range(1,10**6) if A236174(n) == prime(n)]
%o A236437 # _Chai Wah Wu_, Jan 03 2015
%Y A236437 Cf. A052033, A236174, A235377, A235354.
%K A236437 nonn,base
%O A236437 1,1
%A A236437 _N. J. A. Sloane_, Jan 25 2014