cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236439 a(n) = |{0 < k < n-2: A000009(m)^2 + A047967(m)^2 is prime with m = k + phi(n-k)/2}|, where phi(.) is Euler's totient function.

Original entry on oeis.org

0, 0, 0, 1, 2, 3, 3, 2, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 4, 2, 3, 2, 3, 5, 4, 3, 2, 6, 6, 4, 2, 1, 8, 4, 4, 3, 1, 6, 4, 3, 3, 3, 3, 3, 4, 4, 5, 3, 4, 5, 3, 3, 7, 4, 5, 5, 5, 11, 7, 6, 3, 7, 8, 6, 5, 5, 8, 6, 7, 11, 7, 5, 7, 8, 7, 7, 5, 10, 10, 5, 6, 8, 6, 10, 8, 6, 8, 11, 10, 6, 10, 7, 7, 9, 4, 9, 11, 8, 13, 7
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 25 2014

Keywords

Comments

Conjecture: a(n) > 0 for all n > 3.
We have verified this for n up to 50000.
The conjecture implies that there are infinitely many positive integers m with A000009(m)^2 + A047967(m)^2 prime. See A236440 for such numbers m.

Examples

			a(14) = 1 since 2 + phi(12)/2 = 4 with A000009(4)^2 + A047967(4)^2 = 2^2 + 3^2 = 13 prime.
a(17) = 1 since 10 + phi(7)/2 = 13 with A000009(13)^2 + A047967(13)^2 = 18^2 + 83^2 = 7213 prime.
		

Crossrefs

Programs

  • Mathematica
    p[n_]:=PrimeQ[PartitionsQ[n]^2+(PartitionsP[n]-PartitionsQ[n])^2]
    a[n_]:=Sum[If[p[k+EulerPhi[n-k]/2],1,0],{k,1,n-3}]
    Table[a[n],{n,1,100}]