This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A236462 #11 Feb 21 2018 12:06:02 %S A236462 19,59,151,181,211,229,389,571,877,983,1039,1259,1549,3023,3121,3191, %T A236462 3259,3517,3719,4099,4261,4463,5237,6947,7529,7591,7927,7933,8317, %U A236462 8389,8971,9403,9619,10163,10939,11131,11717,11743,11839,12301 %N A236462 Primes p with prime(p) + 4 and prime(p) + 6 both prime. %C A236462 According to the conjecture in A236460, this sequence should have infinitely many terms. %C A236462 See A236464 for a similar sequence. %H A236462 Zhi-Wei Sun, <a href="/A236462/b236462.txt">Table of n, a(n) for n = 1..10000</a> %e A236462 a(1) = 19 with 19, prime(19) + 4 = 71 and prime(19) + 6 = 73 all prime. %t A236462 p[n_]:=p[n]=PrimeQ[Prime[n]+4]&&PrimeQ[Prime[n]+6] %t A236462 n=0;Do[If[p[Prime[m]],n=n+1;Print[n," ",Prime[m]]],{m,1,10000}] %t A236462 Select[Prime[Range[1500]],AllTrue[Prime[#]+{4,6},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Feb 21 2018 *) %o A236462 (PARI) s=[]; forprime(p=2, 12500, if(isprime(prime(p)+4) && isprime(prime(p)+6), s=concat(s, p))); s \\ _Colin Barker_, Jan 26 2014 %Y A236462 Cf. A000040, A022005, A236456, A236457, A236458, A236460, A236464. %K A236462 nonn %O A236462 1,1 %A A236462 _Zhi-Wei Sun_, Jan 26 2014