cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A236464 Primes p with prime(p) + 2 and prime(p) + 6 both prime.

Original entry on oeis.org

3, 5, 7, 13, 43, 89, 313, 613, 643, 743, 1171, 1279, 1627, 1823, 1867, 1999, 2311, 2393, 2683, 2753, 2789, 3571, 4441, 4561, 5039, 5231, 5647, 5953, 6067, 6317, 6899, 8039, 8087, 8753, 8923, 9337, 9787, 9931, 10259, 10667
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 26 2014

Keywords

Comments

According to the conjecture in A236472, this sequence contains infinitely many terms, i.e., there are infinitely many prime triples of the form {prime(p), prime(p) + 2, prime(p) + 6} with p prime.
See A236462 for a similar sequence.

Examples

			a(1) = 3 since 3, prime(3) + 2 = 7 and prime(3) + 6 = 11 are all prime, but prime(2) + 6 = 9 is composite.
		

Crossrefs

Programs

  • Mathematica
    p[n_]:=p[n]=PrimeQ[Prime[n]+2]&&PrimeQ[Prime[n]+6]
    n=0;Do[If[p[Prime[m]],n=n+1;Print[n," ",Prime[m]]],{m,1,10000}]

A236508 a(n) = |{0 < k < n-2: p = 2*phi(k) + phi(n-k)/2 - 1, p + 2, p + 6 and prime(p) + 6 are all prime}|, where phi(.) is Euler's totient function.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 2, 1, 1, 2, 1, 3, 2, 2, 0, 2, 3, 1, 2, 1, 3, 3, 2, 2, 1, 1, 1, 3, 0, 2, 3, 2, 1, 3, 0, 2, 0, 1, 1, 1, 1, 2, 0, 0, 0, 0, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 2, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 27 2014

Keywords

Comments

Conjecture: a(n) > 0 for all n > 146.
We have verified this for n up to 52000.
The conjecture implies that there are infinitely many prime triples {p, p + 2, p + 6} with {prime(p), prime(p) + 6} a sexy prime pair. See A236509 for such primes p.

Examples

			a(13) = 1 since 2*phi(3) + phi(10)/2 - 1 = 5, 5 + 2 = 7, 5 + 6 = 11 and prime(5) + 6 = 11 + 6 = 17 are all prime.
a(244) = 1 since 2*phi(153) + phi(244-153)/2 - 1 = 2*96 + 72/2 - 1 = 227, 227 + 2 = 229, 227 + 6 = 233 and prime(227) + 6 = 1433 + 6 = 1439 are all prime.
		

Crossrefs

Programs

  • Mathematica
    p[n_]:=PrimeQ[n]&&PrimeQ[n+2]&&PrimeQ[n+6]&&PrimeQ[Prime[n]+6]
    f[n_,k_]:=2*EulerPhi[k]+EulerPhi[n-k]/2-1
    a[n_]:=Sum[If[p[f[n,k]],1,0],{k,1,n-3}]
    Table[a[n],{n,1,100}]
Showing 1-2 of 2 results.