This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A236474 #24 Aug 19 2018 10:43:27 %S A236474 1,20,45,320,6615,382200,680890228200,8169778639360,27445575588992, %T A236474 56626123593600,1235050901504640 %N A236474 Numbers such that the sum of unitary divisors (A034448) is equal to the sum of exponential divisors (A051377). %C A236474 Following numbers also belongs to this sequence, however their actual positions are unknown: 3640527948039840, 181552482521182080, 19736989888296320640, 108455561012908979640, 796015410768776072160, 4220107447484548287360, 39697147230528075361920, 202868762331595335655680, 668431747385354202124160, 124402428235930297906738935, 2456687209744634987008753664. %H A236474 Tim Trudgian, <a href="http://arxiv.org/abs/1312.4615">The sum of the unitary divisor function</a>, arXiv:1312.4615 [math.NT], 2013-2014 (see page 6). %H A236474 Tim Trudgian, <a href="https://www.emis.de/journals/PIMB/111/16.html">The sum of the unitary divisor function</a>, Publications de l'Institut Mathématique (Beograd), Vol. 97(111), 2015. %e A236474 The e-divisors of 20 are 10 and 20, sum 30, and its unitary divisors are 1, 4, 5, and 20, also sum 30. %e A236474 For n=320=2^6*5 we have A051377(n)=(2^6+2^3+2^2+2)*5 = 390 and A034448(n)=(2^6+1)*(5+1) = 390 again. %Y A236474 Cf. A034448, A051377. %K A236474 nonn,more %O A236474 1,2 %A A236474 _Michel Marcus_, Jan 29 2014 %E A236474 More terms from _Andrew Lelechenko_, Feb 06 2014