cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236478 Primes p such that p^3 - p + 1 is prime.

This page as a plain text file.
%I A236478 #14 Oct 30 2021 16:27:21
%S A236478 2,7,11,19,31,41,101,139,167,239,271,277,307,347,419,449,479,491,521,
%T A236478 547,557,587,617,619,631,647,739,757,761,769,787,809,827,839,857,971,
%U A236478 977,991,1019,1069,1187,1201,1217,1231,1277,1487,1621,1637,1709,1747,1861
%N A236478 Primes p such that p^3 - p + 1 is prime.
%C A236478 Primes in the sequence A236477.
%H A236478 Daniel Starodubtsev, <a href="/A236478/b236478.txt">Table of n, a(n) for n = 1..10000</a>
%e A236478 419 is prime and 419^3 - 419 + 1 = 73559641 is prime. So 419 is a member of this sequence.
%t A236478 Select[Prime[Range[300]],PrimeQ[#^3-#+1]&] (* _Harvey P. Dale_, Oct 30 2021 *)
%o A236478 (Python)
%o A236478 import sympy
%o A236478 from sympy import isprime
%o A236478 {print(n) for n in range(10**4) if isprime(n) and isprime(n**3-n+1)}
%o A236478 (PARI)
%o A236478 s=[]; forprime(p=2, 2000, if(isprime(p^3-p+1), s=concat(s, p))); s \\ _Colin Barker_, Jan 27 2014
%Y A236478 Cf. A236477.
%K A236478 nonn
%O A236478 1,1
%A A236478 _Derek Orr_, Jan 26 2014
%E A236478 More terms from _Colin Barker_, Jan 27 2014