cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236508 a(n) = |{0 < k < n-2: p = 2*phi(k) + phi(n-k)/2 - 1, p + 2, p + 6 and prime(p) + 6 are all prime}|, where phi(.) is Euler's totient function.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 2, 1, 1, 2, 1, 3, 2, 2, 0, 2, 3, 1, 2, 1, 3, 3, 2, 2, 1, 1, 1, 3, 0, 2, 3, 2, 1, 3, 0, 2, 0, 1, 1, 1, 1, 2, 0, 0, 0, 0, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 2, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 27 2014

Keywords

Comments

Conjecture: a(n) > 0 for all n > 146.
We have verified this for n up to 52000.
The conjecture implies that there are infinitely many prime triples {p, p + 2, p + 6} with {prime(p), prime(p) + 6} a sexy prime pair. See A236509 for such primes p.

Examples

			a(13) = 1 since 2*phi(3) + phi(10)/2 - 1 = 5, 5 + 2 = 7, 5 + 6 = 11 and prime(5) + 6 = 11 + 6 = 17 are all prime.
a(244) = 1 since 2*phi(153) + phi(244-153)/2 - 1 = 2*96 + 72/2 - 1 = 227, 227 + 2 = 229, 227 + 6 = 233 and prime(227) + 6 = 1433 + 6 = 1439 are all prime.
		

Crossrefs

Programs

  • Mathematica
    p[n_]:=PrimeQ[n]&&PrimeQ[n+2]&&PrimeQ[n+6]&&PrimeQ[Prime[n]+6]
    f[n_,k_]:=2*EulerPhi[k]+EulerPhi[n-k]/2-1
    a[n_]:=Sum[If[p[f[n,k]],1,0],{k,1,n-3}]
    Table[a[n],{n,1,100}]