A236508 a(n) = |{0 < k < n-2: p = 2*phi(k) + phi(n-k)/2 - 1, p + 2, p + 6 and prime(p) + 6 are all prime}|, where phi(.) is Euler's totient function.
0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 2, 1, 1, 2, 1, 3, 2, 2, 0, 2, 3, 1, 2, 1, 3, 3, 2, 2, 1, 1, 1, 3, 0, 2, 3, 2, 1, 3, 0, 2, 0, 1, 1, 1, 1, 2, 0, 0, 0, 0, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 2, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1
Offset: 1
Keywords
Examples
a(13) = 1 since 2*phi(3) + phi(10)/2 - 1 = 5, 5 + 2 = 7, 5 + 6 = 11 and prime(5) + 6 = 11 + 6 = 17 are all prime. a(244) = 1 since 2*phi(153) + phi(244-153)/2 - 1 = 2*96 + 72/2 - 1 = 227, 227 + 2 = 229, 227 + 6 = 233 and prime(227) + 6 = 1433 + 6 = 1439 are all prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
p[n_]:=PrimeQ[n]&&PrimeQ[n+2]&&PrimeQ[n+6]&&PrimeQ[Prime[n]+6] f[n_,k_]:=2*EulerPhi[k]+EulerPhi[n-k]/2-1 a[n_]:=Sum[If[p[f[n,k]],1,0],{k,1,n-3}] Table[a[n],{n,1,100}]
Comments