This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A236512 #16 Jul 17 2025 21:45:07 %S A236512 9241,85303,110581,296011,331081,465523,644353,659371,849943,1108993, %T A236512 1116163,1210483,2149471,2469241,2963923,3409753,3704203,4451071, %U A236512 4774801,4978003,5665213,5674993,5995021,6507343,6817501,7529941,7596373,7693531,7973653,8320831,8344681 %N A236512 Primes whose representation in base (2), base (3), base (4) and base (5) are also prime when read in decimal. %H A236512 K. D. Bajpai, <a href="/A236512/b236512.txt">Table of n, a(n) for n = 1..797</a> %e A236512 9241 is in the sequence because it is prime. Its representation in base (2):{10010000011001}, base (3):{110200021}, base (4):{2100121} and base (5):{243431}, when read in decimal are also prime. %t A236512 t={}; n=1; While[Length[t]<31,n=NextPrime[n]; If[PrimeQ[FromDigits[IntegerDigits[n,2]]]&&PrimeQ[FromDigits[IntegerDigits[n,3]]] &&PrimeQ[FromDigits[IntegerDigits[n,4]]]&&PrimeQ[FromDigits[IntegerDigits[n,5]]], AppendTo[t,n]]]; t %o A236512 (PARI) %o A236512 default(primelimit,2^31) %o A236512 base_b(n, b) = { %o A236512 my(s=[], r, x=10); %o A236512 while(n>0, %o A236512 r = n%b; %o A236512 n = n\b; %o A236512 s = concat(r, s) %o A236512 ); %o A236512 eval(Pol(s)) %o A236512 } %o A236512 A236512(maxp) = { %o A236512 forprime(p=2, maxp, %o A236512 if(isprime(base_b(p, 2)) && %o A236512 isprime(base_b(p, 3)) && %o A236512 isprime(base_b(p, 4)) && %o A236512 isprime(base_b(p, 5)), print1(p, ", ") %o A236512 ) %o A236512 ) %o A236512 } %o A236512 \\ _Colin Barker_, Jan 29 2014 %Y A236512 Cf. A000040 (prime numbers), A065720 (primes: binary representation is also prime), %Y A236512 A236365 (primes: binary and octal representation is also prime). %K A236512 nonn,base %O A236512 1,1 %A A236512 _K. D. Bajpai_, Jan 27 2014