cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236512 Primes whose representation in base (2), base (3), base (4) and base (5) are also prime when read in decimal.

This page as a plain text file.
%I A236512 #16 Jul 17 2025 21:45:07
%S A236512 9241,85303,110581,296011,331081,465523,644353,659371,849943,1108993,
%T A236512 1116163,1210483,2149471,2469241,2963923,3409753,3704203,4451071,
%U A236512 4774801,4978003,5665213,5674993,5995021,6507343,6817501,7529941,7596373,7693531,7973653,8320831,8344681
%N A236512 Primes whose representation in base (2), base (3), base (4) and base (5) are also prime when read in decimal.
%H A236512 K. D. Bajpai, <a href="/A236512/b236512.txt">Table of n, a(n) for n = 1..797</a>
%e A236512 9241 is in the sequence because it is prime. Its representation in base (2):{10010000011001}, base (3):{110200021}, base (4):{2100121} and base (5):{243431}, when read in decimal are also prime.
%t A236512 t={}; n=1; While[Length[t]<31,n=NextPrime[n]; If[PrimeQ[FromDigits[IntegerDigits[n,2]]]&&PrimeQ[FromDigits[IntegerDigits[n,3]]] &&PrimeQ[FromDigits[IntegerDigits[n,4]]]&&PrimeQ[FromDigits[IntegerDigits[n,5]]], AppendTo[t,n]]]; t
%o A236512 (PARI)
%o A236512 default(primelimit,2^31)
%o A236512 base_b(n, b) = {
%o A236512   my(s=[], r, x=10);
%o A236512   while(n>0,
%o A236512     r = n%b;
%o A236512     n = n\b;
%o A236512     s = concat(r, s)
%o A236512   );
%o A236512   eval(Pol(s))
%o A236512 }
%o A236512 A236512(maxp) = {
%o A236512   forprime(p=2, maxp,
%o A236512     if(isprime(base_b(p, 2)) &&
%o A236512        isprime(base_b(p, 3)) &&
%o A236512        isprime(base_b(p, 4)) &&
%o A236512        isprime(base_b(p, 5)), print1(p, ", ")
%o A236512     )
%o A236512   )
%o A236512 }
%o A236512 \\ _Colin Barker_, Jan 29 2014
%Y A236512 Cf. A000040 (prime numbers), A065720 (primes: binary representation is also prime),
%Y A236512 A236365 (primes: binary and octal representation is also prime).
%K A236512 nonn,base
%O A236512 1,1
%A A236512 _K. D. Bajpai_, Jan 27 2014