This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A236528 #19 May 22 2025 10:21:36 %S A236528 4,41,419,41911,4191119,41911193,419111933,41911193341,4191119334151, %T A236528 419111933415151,41911193341515187,4191119334151518719, %U A236528 419111933415151871963,41911193341515187196323,4191119334151518719632313,419111933415151871963231329 %N A236528 Start with 4; thereafter, primes obtained by concatenating to the end of previous term the next smallest number that will produce a prime. %C A236528 a(n+1) is the next smallest prime beginning with a(n). Initial term is 4. %C A236528 After a(1), these are the primes arising in A069606. %e A236528 a(1) = 4 by definition. %e A236528 a(2) is the next smallest prime beginning with 4, so a(2) = 41. %e A236528 a(3) is the next smallest prime beginning with 41, so a(3) = 419. %e A236528 ...and so on. %t A236528 NestList[Module[{k=1},While[!PrimeQ[#*10^IntegerLength[k]+k],k+=2];#*10^IntegerLength[k]+ k]&,4,20] (* _Harvey P. Dale_, Jul 20 2024 *) %o A236528 (Python) %o A236528 import sympy %o A236528 from sympy import isprime %o A236528 def b(x): %o A236528 num = str(x) %o A236528 n = 1 %o A236528 while n < 10**3: %o A236528 new_num = str(x) + str(n) %o A236528 if isprime(int(new_num)): %o A236528 print(int(new_num)) %o A236528 x = new_num %o A236528 n = 1 %o A236528 else: %o A236528 n += 1 %o A236528 b(4) %Y A236528 Cf. A110773, A048553, A069606. %K A236528 nonn,base %O A236528 1,1 %A A236528 _Derek Orr_, Jan 27 2014