This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A236536 #17 Sep 16 2023 12:02:07 %S A236536 4,6,9,8,12,16,10,15,21,26,14,18,25,33,39,20,24,28,38,49,56,22,32,36, %T A236536 42,55,69,78,27,34,48,52,60,77,94,106,30,40,50,68,74,84,105,125,141, %U A236536 35,45,57,70,93,100,115,140,164,184,44,51,64,80,95,124,133,152,183,212,236,46,63,72,88,110,126,162,174,198,235,270,299 %N A236536 Array T(n,k) read along antidiagonals: the composites of order of compositeness n in row n. %C A236536 Row n contains the composites A002808(j) for which A059981(j) = n. %C A236536 The 1st row contains the composites with a nonprime index, A002808(1)=4, A002808(2)=6, A002808(3)=8, A002808(5)=10, A002808(7)=14,... %C A236536 The 2nd row contains the composites with an index in the 1st row. %C A236536 Recursively the followup rows contain the composites that need a higher number of applications of A002808 to reach a nonprime. %F A236536 T(1,k) = A022449(k). %F A236536 T(n,k) = A002808( T(n-1,k) ), n>1 . %e A236536 The array starts: %e A236536 4, 6, 8, 10, 14, 20, 22, 27, 30, 35,... %e A236536 9, 12, 15, 18, 24, 32, 34, 40, 45, 51,... %e A236536 16, 21, 25, 28, 36, 48, 50, 57, 64, 72,... %e A236536 26, 33, 38, 42, 52, 68, 70, 80, 88, 98,... %e A236536 39, 49, 55, 60, 74, 93, 95,110,119,130,... %e A236536 56, 69, 77, 84,100,124,126,145,156,170,... %e A236536 78, 94,105,115,133,162,165,188,203,218,... %e A236536 106,125,140,152,174,209,213,242,259,278,... %e A236536 141,164,183,198,222,266,272,305,326,348,... %p A236536 A236536 := proc(n,k) %p A236536 option remember ; %p A236536 if n = 1 then %p A236536 A022449(k) ; %p A236536 else %p A236536 A002808(procname(n-1,k)) ; %p A236536 end if: %p A236536 end proc: %p A236536 for d from 2 to 10 do %p A236536 for k from d-1 to by -1 do %p A236536 printf("%3d,",A236536(d-k,k)) ; %p A236536 end do: %p A236536 end do: %t A236536 Composite[n_] := FixedPoint[n + PrimePi[#] + 1&, n + PrimePi[n] + 1]; %t A236536 T[n_, k_] := T[n, k] = If[n == 1, Composite[If[k == 1, 1, Prime[k - 1]]], Composite[T[n - 1, k]]]; %t A236536 Table[T[n - k + 1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* _Jean-François Alcover_, Sep 16 2023 *) %Y A236536 Cf. A006508 (column 1), A022449 (row 1), A135044, A236542, A002808. %K A236536 nonn,easy,tabl %O A236536 1,1 %A A236536 _R. J. Mathar_, Jan 28 2014