This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A236538 #43 Mar 28 2024 21:56:50 %S A236538 1,3,5,8,12,16,20,28,36,44,48,64,80,96,112,112,144,176,208,240,272, %T A236538 256,320,384,448,512,576,640,576,704,832,960,1088,1216,1344,1472,1280, %U A236538 1536,1792,2048,2304,2560,2816,3072,3328,2816,3328,3840,4352,4864,5376 %N A236538 Triangle read by rows: T(n,k) = (n+1)*2^(n-2)+(k-1)*2^(n-1) for 1 <= k <= n. %C A236538 1, 9, 45, 161, 497, 1409, ... is the sequence of perimeters (sum of border elements) of the triangle. %C A236538 1, 5, 80, 3520, 394240, 107233280, 68629299200, ... is the sequence of determinants of the triangle. %C A236538 Only the first three terms are odd. %H A236538 Fedor Igumnov, <a href="/A236538/a236538.txt">T(n,k) for n = 1..26</a> %F A236538 T(n,k) = T(n-1,k) + T(n-1,k+1). %F A236538 Sum_{k=1..n} T(n,k) = n^2*2^(n-1) = A014477(n-1). %e A236538 Triangle begins: %e A236538 ================================================ %e A236538 \k | 1 2 3 4 5 6 7 %e A236538 n\ | %e A236538 ================================================ %e A236538 1 | 1; %e A236538 2 | 3, 5; %e A236538 3 | 8, 12, 16; %e A236538 4 | 20, 28, 36, 44; %e A236538 5 | 48, 64, 80, 96, 112; %e A236538 6 | 112, 144, 176, 208, 240, 272; %e A236538 7 | 256, 320, 384, 448, 512, 576, 640; %e A236538 ... %t A236538 t[n_, k_] := (n + 1)*2^(n - 2) + (k - 1)*2^(n - 1); Table[t[n, k], {n, 10}, {k, n}] // Flatten (* _Bruno Berselli_, Jan 28 2014 *) %o A236538 (C) int a(int n, int k) {return (n+1)*pow(2,n-2)+(k-1)*pow(2,n-1);} %o A236538 (Magma) /* As triangle: */ [[(n+1)*2^(n-2)+(k-1)*2^(n-1): k in [1..n]]: n in [1..10]]; // _Bruno Berselli_, Jan 28 2014 %Y A236538 Cf. A001792 (column 1), A053220 (right border). Also: %Y A236538 A014477, row sums; %Y A236538 A036826, partial sums; %Y A236538 A058962, central elements in odd rows; %Y A236538 A045623, second column; %Y A236538 A045891, third column; %Y A236538 A034007, fourth column; %Y A236538 A167667, subdiagonal; %Y A236538 A130129, second subdiagonal. %K A236538 nonn,tabl,easy %O A236538 1,2 %A A236538 _Fedor Igumnov_, Jan 28 2014 %E A236538 More terms from _Bruno Berselli_, Jan 28 2014