A236541 Number of ways to write 2*n = k + m with 0 < k <= m such that prime(k) + m and k + prime(m) are both prime.
1, 1, 0, 1, 1, 2, 0, 1, 1, 0, 3, 2, 1, 2, 2, 1, 1, 2, 1, 1, 0, 2, 2, 4, 0, 4, 2, 1, 2, 3, 0, 4, 3, 2, 1, 1, 1, 1, 2, 2, 1, 3, 2, 2, 5, 1, 5, 3, 3, 4, 5, 1, 4, 1, 3, 3, 6, 4, 4, 1, 4, 4, 3, 5, 5, 5, 2, 2, 2, 4, 3, 2, 3, 3, 7, 4, 3, 2, 4, 3, 5, 3, 3, 5, 2, 4, 6, 3, 4, 3, 4, 2, 5, 2, 7, 6, 3, 3, 5, 4
Offset: 1
Keywords
Examples
a(9) = 1 since 2*9 = 8 + 10 with prime(8) + 10 = 19 + 10 = 29 and 8 + prime(10) = 8 + 29 = 37 both prime. a(92) = 1 since 2*92 = 86 + 98 with prime(86) + 98 = 443 + 98 = 541 and 86 + prime(98) = 86 + 521 = 607 both prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
p[k_,m_]:=PrimeQ[Prime[k]+m] a[n_]:=Sum[If[p[k,2n-k]&&p[2n-k,k],1,0],{k,1,n}] Table[a[n],{n,1,100}]
Comments