This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A236542 #14 Apr 18 2020 19:14:00 %S A236542 2,7,3,13,17,5,19,41,59,11,23,67,179,277,31,29,83,331,1063,1787,127, %T A236542 37,109,431,2221,8527,15299,709,43,157,599,3001,19577,87803,167449, %U A236542 5381,47,191,919,4397,27457,219613,1128889,2269733,52711 %N A236542 Array T(n,k) read along descending antidiagonals: row n contains the primes with n steps in the prime index chain. %C A236542 Row n contains the primes A000040(j) for which A049076(j) = n. %H A236542 N. Fernandez, <a href="http://www.borve.org/primeness/FOP.html">An order of primeness, F(p)</a>. %F A236542 T(1,k) = A007821(k). %F A236542 T(n,k) = prime( T(n-1,k) ), n>1 . %e A236542 The array starts: %e A236542 2, 7, 13, 19, 23, 29, 37, 43, 47, 53,... %e A236542 3, 17, 41, 67, 83, 109, 157, 191, 211, 241,... %e A236542 5, 59, 179, 331, 431, 599, 919, 1153, 1297, 1523,... %e A236542 11, 277, 1063, 2221, 3001, 4397, 7193, 9319,10631,12763,... %e A236542 31, 1787, 8527,19577,27457,42043,72727,96797,112129,137077,... %p A236542 A236542 := proc(n,k) %p A236542 option remember ; %p A236542 if n = 1 then %p A236542 A007821(k) ; %p A236542 else %p A236542 ithprime(procname(n-1,k)) ; %p A236542 end if: %p A236542 end proc: %p A236542 for d from 2 to 10 do %p A236542 for k from d-1 to 1 by -1 do %p A236542 printf("%d,",A236542(d-k,k)) ; %p A236542 end do: %p A236542 end do: %t A236542 A007821 = Prime[Select[Range[15], !PrimeQ[#]&]]; %t A236542 T[n_, k_] := T[n, k] = If[n == 1, If[k <= Length[A007821], A007821[[k]], Print["A007821 must be extended"]; Abort[]], Prime[T[n-1, k]]]; %t A236542 Table[T[n-k+1, k], {n, 1, 9}, {k, n, 1, -1}] // Flatten (* _Jean-François Alcover_, Apr 16 2020 *) %Y A236542 Cf. A007821 (row 1), A049078 (row 2), A049079 (row 3), A007097 (column 1), A058010 (diagonal), A057456 - A057457 (columns), A135044, A236536. %K A236542 nonn,tabl %O A236542 1,1 %A A236542 _R. J. Mathar_, Jan 28 2014