cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236559 Number of partitions of 2n of type EO (see Comments).

This page as a plain text file.
%I A236559 #32 Jan 12 2020 11:29:10
%S A236559 0,1,2,5,10,20,37,66,113,190,310,497,782,1212,1851,2793,4163,6142,
%T A236559 8972,12989,18646,26561,37556,52743,73593,102064,140736,193011,263333,
%U A236559 357521,483129,649960,870677,1161604,1543687,2043780,2696156,3544485,4644241,6065739
%N A236559 Number of partitions of 2n of type EO (see Comments).
%C A236559 The partitions of n are partitioned into four types:
%C A236559 EO, even # of odd parts and odd  # of even parts, A236559;
%C A236559 OE, odd  # of odd parts and even # of even parts, A160786;
%C A236559 EE, even # of odd parts and even # of even parts, A236913;
%C A236559 OO, odd  # of odd parts and odd  # of even parts, A236914.
%C A236559 A236559 and A160786 are the bisections of A027193;
%C A236559 A236913 and A236914 are the bisections of A027187.
%H A236559 Seiichi Manyama, <a href="/A236559/b236559.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Alois P. Heinz)
%e A236559 The partitions of 4 of type EO are [4] and [2,1,1], so that a(2) = 2.
%e A236559 type/k . 1 .. 2 .. 3 .. 4 .. 5 .. 6 .. 7 .. 8 ... 9 ... 10 .. 11
%e A236559 EO ..... 0 .. 1 .. 0 .. 2 .. 0 .. 5 .. 0 .. 10 .. 0 ... 20 .. 0
%e A236559 OE ..... 1 .. 0 .. 2 .. 0 .. 4 .. 0 .. 8 .. 0 ... 16 .. 0 ... 29
%e A236559 EE ..... 0 .. 1 .. 0 .. 3 .. 0 .. 6 .. 0 .. 12 .. 0 ... 22 .. 0
%e A236559 OO ..... 0 .. 0 .. 1 .. 0 .. 3 .. 0 .. 7 .. 0 ... 14 .. 0 ... 27
%p A236559 b:= proc(n, i) option remember; `if`(n=0, [1, 0$3],
%p A236559       `if`(i<1, [0$4], b(n, i-1)+`if`(i>n, [0$4], (p->
%p A236559       `if`(irem(i, 2)=0, [p[3], p[4], p[1], p[2]],
%p A236559           [p[2], p[1], p[4], p[3]]))(b(n-i, i)))))
%p A236559     end:
%p A236559 a:= n-> b(2*n$2)[3]:
%p A236559 seq(a(n), n=0..40);  # _Alois P. Heinz_, Feb 16 2014
%t A236559 z = 25; m1 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &,  OddQ[IntegerPartitions[2 #]]], EvenQ[(*Odd*)First[#]] && OddQ[(*Even*)Last[#]] &]] &, Range[z]]; m2 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &,       OddQ[IntegerPartitions[2 # - 1]]], OddQ[(*Odd*)First[#]] && EvenQ[(*Even*)Last[#]] &]] &, Range[z]]; m3 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &,
%t A236559 OddQ[IntegerPartitions[2 #]]], EvenQ[(*Odd*)First[#]] && EvenQ[(*Even*)Last[#]] &]] &, Range[z]] ; m4 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &,
%t A236559 OddQ[IntegerPartitions[2 # - 1]]], OddQ[(*Odd*)First[#]] && OddQ[(*Even*)Last[#]] &]] &, Range[z]];
%t A236559 m1 (* A236559, type EO*)
%t A236559 m2 (* A160786, type OE*)
%t A236559 m3 (* A236913, type EE*)
%t A236559 m4 (* A236914, type OO*)
%t A236559 (* _Peter J. C. Moses_, Feb 03 2014 *)
%t A236559 b[n_, i_] := b[n, i] = If[n==0, {1, 0, 0, 0}, If[i<1, {0, 0, 0, 0}, b[n, i - 1] + If[i>n, {0, 0, 0, 0}, Function[p, If[Mod[i, 2]==0, p[[{3, 4, 1, 2}]], p[[{2, 1, 4, 3}]]]][b[n-i, i]]]]]; a[n_] := b[2*n, 2*n][[3]]; Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Oct 27 2015, after _Alois P. Heinz_ *)
%Y A236559 Cf. A000041, A000701, A027187, A027193, A160786, A236913, A236914.
%K A236559 nonn,easy
%O A236559 0,3
%A A236559 _Clark Kimberling_, Feb 01 2014
%E A236559 More terms from and definition corrected by _Alois P. Heinz_, Feb 16 2014