This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A236560 #33 Feb 18 2014 13:30:31 %S A236560 1,1,1,1,1,3,1,3,6,2,1,1,6,21,29,14,1,6,53,161,174,1,10,111,665,1713, %T A236560 1549,608,107,11,1,1,10,201,1961,9973,24267,29437,17438,4756,459 %N A236560 Number T(n,k) of equivalence classes of ways of placing k 3 X 3 tiles in an n X n square under all symmetry operations of the square; irregular triangle T(n,k), n>=3, 0<=k<=floor(n/3)^2, read by rows. %C A236560 The first 8 rows of T(n,k) are: %C A236560 .\ k 0 1 2 3 4 5 6 7 8 9 %C A236560 n %C A236560 3 1 1 %C A236560 4 1 1 %C A236560 5 1 3 %C A236560 6 1 3 6 2 1 %C A236560 7 1 6 21 29 14 %C A236560 8 1 6 53 161 174 %C A236560 9 1 10 111 665 1713 1549 608 107 11 1 %C A236560 10 1 10 201 1961 9973 24267 29437 17438 4756 459 %H A236560 Christopher Hunt Gribble, <a href="/A236560/a236560.cpp.txt">C++ program</a> %F A236560 It appears that: %F A236560 T(n,0) = 1, n>= 3 %F A236560 T(n,1) = (floor((n-3)/2)+1)*(floor((n-3)/2+2))/2, n >= 3 %F A236560 T(c+2*3,2) = A131474(c+1)*(3-1) + A000217(c+1)*floor(3^2/4) + A014409(c+2), 0 <= c < 3, c even %F A236560 T(c+2*3,2) = A131474(c+1)*(3-1) + A000217(c+1)*floor((3-1)(3-3)/4) + A014409(c+2), 0 <= c < 3, c odd %F A236560 T(c+2*3,3) = (c+1)(c+2)/2(2*A002623(c-1)*floor((3-c-1)/2) + A131941(c+1)*floor((3-c)/2)) + S(c+1,3c+2,3), 0 <= c < 3 where %F A236560 S(c+1,3c+2,3) = %F A236560 A054252(2,3), c = 0 %F A236560 A236679(5,3), c = 1 %F A236560 A236560(8,3), c = 2 %e A236560 T(6,2) = 6 because the number of equivalence classes of ways of placing 2 3 X 3 square tiles in a 6 X 6 square under all symmetry operations of the square is 6. The portrayal of an example from each equivalence class is: %e A236560 .___________ ___________ ___________ %e A236560 | | | | |_____| | | | %e A236560 | . | . | | . | | | . |_____| %e A236560 |_____|_____| |_____| . | |_____| | %e A236560 | | | |_____| | | . | %e A236560 | | | | | |_____| %e A236560 |___________| |___________| |_____|_____| %e A236560 . %e A236560 .___________ ___________ ___________ %e A236560 | | | |_____ _____| |_____ | %e A236560 | . | | | | | | |_____| %e A236560 |_____|_____| | . | . | | . | | %e A236560 | | | |_____|_____| |_____| . | %e A236560 | | . | | | | |_____| %e A236560 |_____|_____| |___________| |_____|_____| %Y A236560 Cf. A054252, A236679, A236757, A236800, A236829, A236865, A236915, A236936, A236939. %K A236560 tabf,nonn %O A236560 3,6 %A A236560 _Christopher Hunt Gribble_, Jan 30 2014