A236566 Number of ordered ways to write 2*n = p + q with p, q and prime(p + 2) + 2 all prime.
0, 0, 1, 2, 2, 1, 2, 3, 2, 1, 3, 2, 1, 2, 1, 1, 4, 2, 1, 2, 3, 3, 4, 5, 4, 4, 5, 2, 4, 4, 3, 5, 3, 1, 5, 6, 4, 3, 6, 2, 4, 8, 4, 3, 6, 3, 4, 3, 3, 4, 5, 4, 3, 6, 6, 5, 8, 3, 4, 7, 2, 3, 5, 2, 4, 4, 3, 3, 6, 5, 4, 6, 3, 4, 7, 3, 5, 4, 2, 4, 4, 1, 2, 7, 4, 2, 5, 3, 5, 6, 4, 4, 4, 2, 3, 4, 4, 4, 5, 2
Offset: 1
Keywords
Examples
a(10) = 1 since 2*10 = 3 + 17 with 3, 17 and prime(3 + 2) + 2 = 11 + 2 = 13 all prime. a(589) = 1 since 2*589 = 577 + 601 with 577, 601 and prime(577 + 2) + 2 = 4229 + 2 = 4231 all prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
p[m_]:=PrimeQ[Prime[m+2]+2] a[n_]:=Sum[If[p[Prime[k]]&&PrimeQ[2n-Prime[k]],1,0],{k,1,PrimePi[2n-1]}] Table[a[n],{n,1,100}]
Comments