cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A236619 a(n) = |{0 < k < n: prime(m)^3 + 2*m^3 and m^3 + 2*prime(m)^3 are both prime with m = 3*phi(k) + phi(n-k) - 1}|, where phi(.) is Euler's totient function.

Original entry on oeis.org

0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 1, 2, 0, 0, 2, 2, 1, 1, 0, 1, 1, 2, 2, 1, 2, 4, 0, 1, 3, 0, 2, 3, 3, 2, 3, 1, 3, 2, 3, 3, 2, 4, 3, 4, 2, 0, 2, 5, 4, 2, 4, 2, 2, 3, 5, 5, 6
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 29 2014

Keywords

Comments

Conjecture: a(n) > 0 for every n = 90, 91, ....
We have verified this for n up to 100000.
The conjecture implies that there are infinitely many positive integers m with prime(m)^3 + 2*m^3 and m^3 + 2*prime(m)^3 both prime.

Examples

			a(51) = 1 since 3*phi(35) + phi(51-35) - 1 = 3*24 + 8 - 1 = 79 with prime(79)^3 + 2*79^3 = 401^3 + 2*79^3 = 65467279 and 79^3 + 2*prime(79)^3 = 79^3 + 2*401^3 = 129455441 both prime.
		

Crossrefs

Programs

  • Mathematica
    p[n_]:=PrimeQ[Prime[n]^3+2*n^3]&&PrimeQ[n^3+2*Prime[n]^3]
    f[n_,k_]:=3*EulerPhi[k]+EulerPhi[n-k]-1
    a[n_]:=Sum[If[p[f[n,k]],1,0],{k,1,n-1}]
    Table[a[n],{n,1,100}]
Showing 1-1 of 1 results.