This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A236577 #20 Nov 15 2021 12:20:23 %S A236577 1,1,1,6,13,22,64,155,321,783,1888,4233,9912,23494,54177,126019, %T A236577 295681,687690,1600185,3738332,8712992,20293761,47337405,110368563, %U A236577 257206012,599684007,1398149988,3259051800,7597720649,17712981963 %N A236577 The number of tilings of a 6 X n floor with 1 X 3 trominoes. %C A236577 Tilings are counted irrespective of internal symmetry: Tilings that match each other after rotations and/or reflections are counted with their multiplicity. %H A236577 G. C. Greubel, <a href="/A236577/b236577.txt">Table of n, a(n) for n = 0..1000</a> %H A236577 R. J. Mathar, <a href="http://arxiv.org/abs/1311.6135">Paving Rectangular Regions with Rectangular Tiles: Tatami and Non-Tatami Tilings</a>, arXiv:1311.6135 [math.CO], 2013, Table 21. %H A236577 R. J. Mathar, <a href="http://arxiv.org/abs/1406.7788">Tilings of Rectangular Regions by Rectangular Tiles: Counts Derived from Transfer Matrices</a>, arXiv:1406.7788 [math.CO], 2014, eq (14). %H A236577 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,7,-1,-5,-10,-1,3,5,1,-1,-1). %F A236577 G.f.: See the definition of g in the Maple code. %p A236577 g := (1-x^3)^2*(-x^2+1-x^3)/ (-x^10+x^12+x^11+10*x^6-5*x^9-3*x^8+x^7+x^4-7*x^3+5*x^5-x^2-x+1) ; %p A236577 taylor(%,x=0,30) ; %p A236577 gfun[seriestolist](%) ; %t A236577 CoefficientList[Series[(1 - x^3)^2*(-x^2 + 1 - x^3)/(-x^10 + x^12 + x^11 + 10*x^6 - 5*x^9 - 3*x^8 + x^7 + x^4 - 7*x^3 + 5*x^5 - x^2 - x + 1), {x, 0, 50}], x] (* _G. C. Greubel_, Apr 27 2017 *) %o A236577 (PARI) x='x+O('x^50); Vec((1-x^3)^2*(-x^2+1-x^3)/(-x^10+x^12+x^11+10*x^6 -5*x^9-3*x^8+x^7+x^4-7*x^3+5*x^5-x^2-x+1)) \\ _G. C. Greubel_, Apr 27 2017 %Y A236577 Cf. A000930 (3Xn floor), A049086 (4X3n floor), A236576 - A236578. %Y A236577 Column k=3 of A250662. %Y A236577 Cf. A251073. %K A236577 nonn,easy %O A236577 0,4 %A A236577 _R. J. Mathar_, Jan 29 2014