This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A236625 #21 Nov 03 2022 08:42:59 %S A236625 0,2,6,24,66,180,496,1272,3202,7798,18980,45076,106288,246956,568776, %T A236625 1299184,2944654,6630660,14838606,33026000,73126376,161198136, %U A236625 353812612,773645124,1685548792,3660364490,7924414752,17107225340,36832846344,79107019964,169505684844 %N A236625 Total number of parts in all overcompositions of n. %C A236625 For the definition of overcomposition see A236002. %C A236625 The equivalent sequence for overpartitions is A235792. %C A236625 Row sums of triangle A236628. %H A236625 Alois P. Heinz, <a href="/A236625/b236625.txt">Table of n, a(n) for n = 0..1000</a> %e A236625 For n = 3 the 12 overcompositions of 3 are [3], [3'], [1, 2], [1', 2], [1, 2'], [1', 2'], [2, 1], [2', 1], [2, 1'], [2', 1'], [1, 1, 1], [1', 1, 1]. There are 24 parts, so a(3) = 24. %p A236625 b:= proc(n, i, p) option remember; `if`(n=0, [p!, 0], %p A236625 `if`(i<1, 0, add((p-> p+[0, p[1]*j])(1/j!* %p A236625 `if`(j>0, 2, 1)*b(n-i*j, i-1, p+j)), j=0..n/i))) %p A236625 end: %p A236625 a:= n-> b(n$2, 0)[2]: %p A236625 seq(a(n), n=0..35); # _Alois P. Heinz_, Apr 28 2016 %t A236625 b[n_, i_, p_] := b[n, i, p] = If[n == 0, {p!, 0}, If[i < 1, {0, 0}, Sum[# + {0, #[[1]]*j}&[1/j!*If[j > 0, 2, 1]*b[n - i*j, i - 1, p + j]], {j, 0, n/i}]]]; %t A236625 a[n_] := b[n, n, 0][[2]]; %t A236625 Table[a[n], {n, 0, 35}] (* _Jean-François Alcover_, Nov 03 2022, after _Alois P. Heinz_ *) %Y A236625 Cf. A001792, A006128, A235999, A236002, A235792, A236626, A236628, A236633. %K A236625 nonn %O A236625 0,2 %A A236625 _Omar E. Pol_, Feb 01 2014 %E A236625 a(6)-a(30) from _Alois P. Heinz_, Feb 02 2014