cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A236631 Triangle read by rows: T(j,k), j>=1, k>=1, in which column k lists the positive squares repeated k-1 times, except the column 1 which is A123327. The elements of the even-indexed columns are multiplied by -1. The first element of column k is in row k(k+1)/2.

Original entry on oeis.org

1, 3, 5, -1, 8, -1, 10, -4, 15, -4, 1, 16, -9, 1, 23, -9, 1, 25, -16, 4, 31, -16, 4, -1, 34, -25, 4, -1, 45, -25, 9, -1, 42, -36, 9, -1, 55, -36, 9, -4, 60, -49, 16, -4, 1, 67, -49, 16, -4, 1, 69, -64, 16, -4, 1, 86, -64, 25, -9, 1, 84, -81, 25, -9, 1, 103
Offset: 1

Views

Author

Omar E. Pol, Jan 29 2014

Keywords

Comments

T(j,k) which row j has length A003056(j) hence the first element of column k is in row A000217(j).
Row sums give A000203.
Interpreted as a sequence with index n this is also the first differences of A236630. If a(n) is positive then a(n) is the number of cells turned ON at n-th stage in the structure of A236630. If a(n) is negative then a(n) is the number of cells turned OFF at n-th stage in the structure of A236630.

Examples

			Written as an irregular triangle the sequence begins:
1;
3;
5,     -1;
8,     -1;
10,    -4;
15,    -4,    1;
16,    -9,    1;
23,    -9,    1;
25,   -16,    4;
31,   -16,    4,   -1;
34,   -25,    4,   -1;
45,   -25,    9,   -1;
42,   -36,    9,   -1;
55,   -36,    9,   -4;
60,   -49,   16,   -4,   1;
67,   -49,   16,   -4,   1;
69,   -64,   16,   -4,   1;
86,   -64,   25,   -9,   1;
84,   -81,   25,   -9,   1;
103,  -81,   25,   -9,   4;
102, -100,   36,   -9,   4,  -1;
113, -100,   36,  -16,   4,  -1;
122, -121,   36,  -16,   4,  -1;
145, -121,   49,  -16,   4,  -1;
...
For j = 15 the divisors of 15 are 1, 3, 5, 15, therefore the sum of divisors of 15 is 1 + 3 + 5 + 15 = 24. On the other hand the 15th row of triangle is 60, -49, 16, -4, 1, therefore the row sum is 60 - 49 + 16 - 4 + 1 = 24, equalling the sum of divisors of 15.
		

Crossrefs

Formula

T(n,1) = A000203(n) + A004125(n).

A236109 Triangle read by rows: another version of A048158, only here the representation of A004125 is symmetric, as in the representation of A024916 and A000203.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 2, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 2, 3, 3, 0, 0, 0, 0, 0, 2, 3, 3, 0, 0, 0, 0, 0, 2, 2, 4, 4, 0, 0, 0, 0, 0, 0, 2, 3, 4, 4, 0, 0, 0, 0, 0, 0, 3, 4, 5, 5, 5, 0, 0, 0, 0, 0, 0, 0, 2, 2, 3, 5, 5, 0, 0, 0, 0, 0, 0, 0, 3
Offset: 1

Views

Author

Omar E. Pol, Jan 26 2014

Keywords

Comments

Row sums give A004125.
For more information see A236104, A237591, A237593, A237270.

Examples

			Triangle begins:
0;
0, 0;
0, 0, 1;
0, 0, 0, 1;
0, 0, 0, 2, 2;
0, 0, 0, 0, 1, 2;
0, 0, 0, 0, 2, 3, 3;
0, 0, 0, 0, 0, 2, 3, 3;
0, 0, 0, 0, 0, 2, 2, 4, 4;
0, 0, 0, 0, 0, 0, 2, 3, 4, 4;
0, 0, 0, 0, 0, 0, 3, 4, 5, 5, 5;
0, 0, 0, 0, 0, 0, 0, 2, 2, 3, 5, 5;
...
For the symmetric representation of A000203, A024916, A004125 in the fourth quadrant using a diagram which arises from the sequence A236104 see below:
--------------------------------------------------
n     A000203  A024916            Diagram
--------------------------------------------------
.                         _ _ _ _ _ _ _ _ _ _ _ _
1        1        1      |_| | | | | | | | | | | |
2        3        4      |_ _|_| | | | | | | | | |
3        4        8      |_ _|  _|_| | | | | | | |
4        7       15      |_ _ _|    _|_| | | | | |
5        6       21      |_ _ _|  _|  _ _|_| | | |
6       12       33      |_ _ _ _|  _| |  _ _|_| |
7        8       41      |_ _ _ _| |_ _|_|    _ _|
8       15       56      |_ _ _ _ _|  _|     |* *
9       13       69      |_ _ _ _ _| |      _|* *
10      18       87      |_ _ _ _ _ _|  _ _|* * *
11      12       99      |_ _ _ _ _ _| |* * * * *
12      28      127      |_ _ _ _ _ _ _|* * * * *
.
The 12th row is ........ 0,0,0,0,0,0,0,2,2,3,5,5
.
The total number of cells in the first n set of symmetric regions of the diagram equals A024916(n). It appears that the total number of cells in the n-th set of symmetric regions of the diagram equals sigma(n) = A000203(n). Example: for n = 12 the 12th row of triangle is 144, 25, 9, 1, hence the alternating sums is 144 - 25 + 9 - 1 = 127. On the other hand we have that A000290(12) - A004125(12) = 144 - 17 = A024916(12) = 127, equaling the total number of cells in the diagram after 12 stages. The number of cells in the 12th set of symmetric regions of the diagram is sigma(12) = A000203(12) = 28. Note that in this case there is only one region. The number of "*"'s is A004125(12) = 17.
		

Crossrefs

Showing 1-2 of 2 results.