This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A236634 #16 Jan 11 2020 06:37:11 %S A236634 0,2,2,4,6,10,12,20,26,38,50,70,90,124,160,212,272,356,450,582,732, %T A236634 932,1166,1470,1824,2280,2814,3486,4280,5268,6428,7864,9552,11614, %U A236634 14044,16990,20450,24626,29524,35392,42272,50472,60060,71444,84734,100432,118736 %N A236634 Number of unbalanced partitions of n: the largest part is not equal to the number of parts. %C A236634 Number of partitions of n whose rank is not 0. %F A236634 a(n) = A000041(n) - A047993(n) = 2*A064173(n). %e A236634 For n = 5 we have: %e A236634 ------------------------------------------------------- %e A236634 Partitions Largest Number Dyson's %e A236634 of 5 part of parts rank Type %e A236634 ------------------------------------------------------- %e A236634 5 5 - 1 = 4 unbalanced %e A236634 4+1 4 - 2 = 2 unbalanced %e A236634 3+2 3 - 2 = 1 unbalanced %e A236634 3+1+1 3 - 3 = 0 balanced %e A236634 2+2+1 2 - 3 = -1 unbalanced %e A236634 2+1+1+1 2 - 4 = -2 unbalanced %e A236634 1+1+1+1+1 1 - 5 = -4 unbalanced %e A236634 ------------------------------------------------------- %e A236634 There are 6 partitions whose rank is not 0, so a(5) = 6. %t A236634 P = PartitionsP; %t A236634 a[n_] := P[n] - Sum[-(-1)^k (P[n - (3k^2 - k)/2] - P[n - (3k^2 + k)/2]), {k, 1, Floor[(1 + Sqrt[1 + 24n])/6]}]; %t A236634 a /@ Range[46] (* _Jean-François Alcover_, Jan 11 2020, after _Wouter Meeussen_ in A047993 *) %Y A236634 Cf. A000041, A047993, A064173, A209616. %K A236634 nonn %O A236634 1,2 %A A236634 _Omar E. Pol_, Feb 18 2014