cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236653 Positive integers n such that n^3 divided by the digital root of n is a cube.

This page as a plain text file.
%I A236653 #12 Sep 15 2019 16:54:59
%S A236653 1,8,10,19,26,28,37,44,46,55,62,64,73,80,82,91,98,100,109,116,118,127,
%T A236653 134,136,145,152,154,163,170,172,181,188,190,199,206,208,217,224,226,
%U A236653 235,242,244,253,260,262,271,278,280,289,296,298,307,314,316,325
%N A236653 Positive integers n such that n^3 divided by the digital root of n is a cube.
%H A236653 Colin Barker, <a href="/A236653/b236653.txt">Table of n, a(n) for n = 1..1000</a>
%H A236653 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,-1).
%F A236653 a(n) = a(n-1)+a(n-3)-a(n-4).
%F A236653 G.f.: x*(8*x^3+2*x^2+7*x+1) / ((x-1)^2*(x^2+x+1)).
%e A236653 26 is in the sequence because the digital root of 26 is 8, and 26^3/8 = 2197 = 13^2.
%t A236653 LinearRecurrence[{1,0,1,-1},{1,8,10,19},60] (* _Harvey P. Dale_, Sep 15 2019 *)
%o A236653 (PARI) s=[]; for(n=1, 400, d=(n-1)%9+1; if(n^3%d==0 && ispower(n^3\d, 3), s=concat(s, n))); s
%o A236653 (PARI) Vec(x*(8*x^3+2*x^2+7*x+1)/((x-1)^2*(x^2+x+1)) + O(x^100))
%Y A236653 Cf. A010888, A236652.
%K A236653 nonn,base,easy
%O A236653 1,2
%A A236653 _Colin Barker_, Jan 29 2014