This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A236670 #16 May 22 2025 10:21:36 %S A236670 6,61,613,6131,613141,61314119,6131411917,61314119171,6131411917181, %T A236670 613141191718127,61314119171812789,613141191718127893, %U A236670 61314119171812789379,6131411917181278937929,61314119171812789379291,61314119171812789379291111 %N A236670 Start with 6; thereafter, primes obtained by concatenating to the end of previous term the next smallest number that will produce a prime. %C A236670 a(n+1) is the next smallest prime beginning with a(n). Initial term is 6. After a(1), these are the primes arising in A069608. %e A236670 a(1) = 6 by definition. %e A236670 a(2) is the next smallest prime beginning with 6, so a(2) = 61. %e A236670 a(3) is the next smallest prime beginning with 61, so a(3) = 613. %o A236670 (Python) %o A236670 import sympy %o A236670 from sympy import isprime %o A236670 def b(x): %o A236670 num = str(x) %o A236670 n = 1 %o A236670 while n < 10**3: %o A236670 new_num = str(x) + str(n) %o A236670 if isprime(int(new_num)): %o A236670 print(int(new_num)) %o A236670 x = new_num %o A236670 n = 1 %o A236670 else: %o A236670 n += 1 %o A236670 b(6) %Y A236670 Cf. A069608, A048553, A110773. %K A236670 nonn,base %O A236670 1,1 %A A236670 _Derek Orr_, Jan 29 2014