This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A236671 #21 May 22 2025 10:21:36 %S A236671 8,83,839,83911,839117,83911721,8391172123,83911721233,839117212337, %T A236671 83911721233729,839117212337293,83911721233729399,839117212337293999, %U A236671 83911721233729399993,839117212337293999931,83911721233729399993139 %N A236671 Start with 8; thereafter, primes obtained by concatenating to the end of previous term the next smallest number that will produce a prime. %C A236671 a(n+1) is the next smallest prime beginning with a(n). Initial term is 8. After a(1), these are the primes arising in A069610. %e A236671 a(1) = 8 by definition. %e A236671 a(2) is the next smallest prime beginning with 8, so a(2) = 83. %e A236671 a(3) is the next smallest prime beginning with 83, so a(3) = 839. %t A236671 smp[n_]:=Module[{k=1},While[!PrimeQ[n*10^IntegerLength[k]+k],k++];n 10^IntegerLength[k]+ k]; NestList[smp,8,15] (* _Harvey P. Dale_, Aug 10 2024 *) %o A236671 (Python) %o A236671 import sympy %o A236671 from sympy import isprime %o A236671 def b(x): %o A236671 num = str(x) %o A236671 n = 1 %o A236671 while n < 10**3: %o A236671 new_num = str(x) + str(n) %o A236671 if isprime(int(new_num)): %o A236671 print(int(new_num)) %o A236671 x = new_num %o A236671 n = 1 %o A236671 else: %o A236671 n += 1 %o A236671 b(8) %Y A236671 Cf. A069610, A048553, A110773, %K A236671 nonn,base %O A236671 1,1 %A A236671 _Derek Orr_, Jan 29 2014