This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A236672 #24 Nov 23 2023 07:04:12 %S A236672 9,97,971,9719,971917,97191713,9719171333,971917133323,9719171333237, %T A236672 971917133323777,97191713332377731,9719171333237773159, %U A236672 971917133323777315951,97191713332377731595127,971917133323777315951277,971917133323777315951277269 %N A236672 Start with 9; thereafter, primes obtained by concatenating to the end of previous term the next smallest number that will produce a prime. %C A236672 a(n+1) is the next smallest prime beginning with a(n). Initial term is 9. After a(1), these are the primes in A069611. %H A236672 Robert Israel, <a href="/A236672/b236672.txt">Table of n, a(n) for n = 1..316</a> %e A236672 a(1) = 9 by definition. %e A236672 a(2) is the next smallest prime beginning with 9, so a(2) = 97. %e A236672 a(3) is the next smallest prime beginning with 97, so a(3) = 971. %p A236672 R:= 9: x:= 9: %p A236672 for i from 2 to 20 do %p A236672 for y from 1 by 2 do %p A236672 z:= x*10^(1+ilog10(y)) + y; %p A236672 if isprime(z) then %p A236672 R:= R,z; x:= z; break %p A236672 fi %p A236672 od od: %p A236672 R; # _Robert Israel_, Nov 22 2023 %t A236672 next[p_]:=Module[{i=1,q},While[!PrimeQ[q=10^IntegerLength[i]p+i],i+=2];q]; %t A236672 NestList[next,9,15] (* _Paolo Xausa_, Nov 23 2023 *) %o A236672 (Python) %o A236672 import sympy %o A236672 from sympy import isprime %o A236672 def b(x): %o A236672 num = str(x) %o A236672 n = 1 %o A236672 while n < 10**3: %o A236672 new_num = str(x) + str(n) %o A236672 if isprime(int(new_num)): %o A236672 print(int(new_num)) %o A236672 x = new_num %o A236672 n = 1 %o A236672 else: %o A236672 n += 1 %o A236672 b(9) %Y A236672 Cf. A048553, A110773, A069611. %K A236672 nonn,base %O A236672 1,1 %A A236672 _Derek Orr_, Jan 29 2014