cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236685 Numbers n such that n^A062518(n) is missing more than one digit.

This page as a plain text file.
%I A236685 #9 May 22 2025 10:21:36
%S A236685 14,17,43,57,75,78,93,102,138,139,149,152,165,167,176,177,196,228,248,
%T A236685 253,265,276,289,347,351,352,357,382,395,424,430,432,437,438,449,455,
%U A236685 456,462,477,489,492,502,511,554,570,605,634,649,656,679,682
%N A236685 Numbers n such that n^A062518(n) is missing more than one digit.
%C A236685 A062518(n) is the maximum power k such that k^n does not contain all ten decimal digits.
%e A236685 A062518(43) = 20. And 43^20 = 467056167777397914441056671494001 is missing an 8 and a 2. Thus, 43 is a member of this sequence.
%o A236685 (Python)
%o A236685 def PanDigNum(x):
%o A236685   a = '1234567890'
%o A236685   lst = []
%o A236685   if DigitSum(x) == 1:
%o A236685     return None
%o A236685   for n in range(-200,0):
%o A236685     count = 0
%o A236685     for i in a:
%o A236685       if str(x**(-n)).count(i) > 0:
%o A236685         count += 1
%o A236685       else:
%o A236685         lst.append(i)
%o A236685     if count < len(a):
%o A236685       if len(lst) > 1:
%o A236685         return x
%o A236685       else:
%o A236685         break
%Y A236685 Cf. A062518.
%K A236685 nonn,base
%O A236685 1,1
%A A236685 _Derek Orr_, Jan 29 2014